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Resumo

Este trabalho aborda um novo paradigma que contraria os cânones usuais em aquisi-

ção de dados. A teoria de Compressive Sensing (CS) assegura que é possível recupe-

rar sinais esparsos a partir de um número bem menor de amostras que as necessárias

nos métodos clássicos, e usa para isto protocolos de sensoriamento não-adaptativos.

Além de ser um tema recente que tem causado grande impacto na comunidade

cientí�ca por representar uma quebra de paradigma na área de amostragem e aqui-

sição de dados, a teoria se torna interessante na medida em que envolve ferramentas

matemáticas importantes e noções de aquisição, compressão, redução de dimensio-

nalidade e otimização.

Os fundamentos de CS expostos neste trabalho poderão ser utilizados como guia

bibliográ�co para aqueles que se iniciam nesta área. Além disso, os exemplos elabo-

rados permitem a avaliação do desempenho da técnica em diferentes contextos.

Palavras-Chave: processamento de imagens, compressão de dados, amos-

tragem, representação de sinais, transformadas, programação linear.





Abstract

This work addresses a new paradigm that rises against the common knowledge of

data acquisition. The theory of Compressive Sensing (CS) gives a stable and robust

algorithm that allows sensing at rates much smaller then the Nyquist limit by means

of non-adaptive protocols.

In addition to being a novel idea that has had a great impact on the academic

community, it is a very rich theory that covers interesting mathematical tools as

well as notions of acquisition, compression, dimensional reduction and optimization.

Here are presented the fundamental aspects involved in CS which may be used

as a bibliographic guide for those who are initiating on this �eld. Moreover, the

elaborated examples allow the evaluation of CS performance in di�erent acquisition

scenarios.

Keywords: image processing, data compression, sampling, signal repre-

sentation, transforms, linear programing.





�Don't just read it; �ght it! Ask your own questions, look

for your own examples, discover your own proofs.�

Paul Halmos
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Capítulo 1

Introdução

Aquisição e reconstrução de sinais são essenciais em qualquer sistema de processa-

mento de sinais, e teoremas de amostragem promovem a ponte entre os domínios

contínuos e discretos. O principal teorema que estabelece um limite para a taxa

de amostragem de um sinal garantindo sua reconstrução é o teorema de Shannon-

Nyquist para sinais de banda limitada.

Observa-se, entretanto, que sinais naturais tendem a ser compressíveis, i.e., se

amostrados pontualmente, muitos dos coe�cientes adquiridos são redundantes. As-

sim, é o foco de muitos trabalhos de pesquisa reescrever os dados amostrados de

forma a reduzir número de bits necessários para representá-los. Estes métodos rea-

lizam o que é designado por compressão.

O modelo de amostragem seguido de compressão é muito e�ciente e é usado em

muitas aplicações com bom desempenho. No entanto, a possibilidade de compri-

mir os dados adquiridos sugere que Nyquist era pessimista, pois considerava o pior

cenário no qual tudo que se assume sobre os sinais é a limitação em banda. Mas,

e se, ao invés de considerar a taxa de Nyquist, tentarmos recuperar os dados por

sensoriamento na taxa de informação?

É a isso que se refere Compressive Sensing (CS) 1. Esta teoria surge como um

1Como a teoria em questão é muito nova, ela ainda não tem uma denominação de�nitiva esta-

belecida. De fato, os pesquisadores da área usam os termos Compressive Sensing e Compressible

Sampling de maneira intercambiável. Por esse motivo, decidimos não traduzir o título do trabalho
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novo paradigma que assegura ser possível recuperar sinais esparsos a partir de um

número bem menor de amostras que as necessárias nos métodos clássicos, e usa para

isto protocolos de sensoriamento não-adaptativos.

Além de ser um tema recente, que tem causado grande impacto na comunidade

cientí�ca, por representar uma quebra de paradigma na área de amostragem e aqui-

sição de dados, a teoria se torna interessante na medida em que envolve ferramentas

matemáticas importantes e noções de aquisição, compressão, redução de dimensio-

nalidade e otimização.

1.1 Objetivos

O objetivo deste trabalho é fazer uma exposição dos fundamentos de CS que poderá

ser usada como guia bibliográ�co para aqueles que se iniciam nesta área. Assim, sua

importância está na introdução do estudo de CS na Universidade Federal do Rio de

Janeiro e no estímulo a novos projetos de pesquisa relacionados.

Além disso, tomamos o cuidado de elaborar exemplos de aplicações em diferentes

cenários de aquisição, o que nos permitiu responder a algumas questões interessantes

e avaliar o desempenho da técnica.

1.2 Organização

O Capítulo 2 expõe métodos clássicos para compressão de imagens que utilizam

o paradigma de amostragem seguido de compressão. São estudados métodos que

utilizam transformadas na tentativa de explorar a redundância de sinais naturais

para mapear os dados em coe�cientes menos correlacionados e, portanto, esparsos.

Crescendo em níveis de abstração, este modelo de compressão é relacionado,

no Capítulo 3, a métodos de representação e reconstrução de sinais, que são então

estudados com um enfoque especial à teoria de aproximação.

e, assim adotar a expressão �Compressive Sensing� em inglês, a qual nos parece mais apropriada.

Será utilizada também a abreviação �CS� para designar o tema.
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Com estas primeiras análises, �ca estabelecido o embasamento para a investiga-

ção de CS, que é realizada no Capítulo 4.

No Capítulo 5 são apresentadas conclusões e direções para trabalhos futuros.
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Capítulo 2

Compressão de Imagens

Ao longo das ultimas décadas, a revolução de tecnologias de multimídia vem possi-

bilitando o acesso a grandes quantidades de dados em situações adversas. Um fator

chave que viabiliza estes procedimentos é a habilidade de exprimir informação em

uma forma compacta.

Compressão de dados, portanto, propõe a redução do número de bits necessários

para representar um sinal. Com este objetivo, são exploradas as estruturas dos dados

(como esparsidade e redundância) e características dos usuários (como limitações das

habilidades perceptuais dos seres humanos).

Para avaliar e�ciência de compressão, podem ser levados em consideração pro-

priedades dos algoritmos (esparsidade, velocidade, consumo de memória), o grau de

compressão e a �delidade da reconstrução em relação ao sinal original.

Neste trabalho, será utilizado o critério taxa-distorção, que avalia o compromisso

entre o número médio de bits necessário para representar o valor de cada sinal e uma

quanti�cação da diferença entre o sinal original e sua reconstrução após compressão.

Neste capítulo, serão estudados os elementos básicos e classi�cações de técnicas

de compressão.
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2.1 Codi�cação por Transformada

A maioria dos sinais observados na natureza apresentam alguma possibilidade de

compressão. Este fato não é surpreendente se considerarmos que a redundância

facilita a percepção humana. Por exemplo, é mais fácil e prazeroso ler um texto

com algum nível de repetição, escutar músicas sem variações abruptas e assistir

vídeos com pouca diferença entre quadros. A mesma coisa acontece com imagens,

onde pixels adjacentes costumam apresentar similaridades. A Figura 2.1 compara

uma imagem não redundante (direita) com uma redundante (esquerda).

(a) Imagem lena. (b) Ruído branco Gaussiano.

Figura 2.1: Na imagem lena, pixels que não pertencem à região de contorno são

muito similares aos adjacentes. O ruído branco, por sua vez, não é compressível.

(Extraído de [1].)

A existência de redundância indica que armazenar uma imagem como uma matriz

de pixels na qual cada coe�ciente corresponde à sua intensidade é ine�ciente, uma

vez que muitos valores serão equivalentes.

A solução é encontrar uma representação esparsa, i.e., uma representação na qual

a informação está concentrada em apenas poucos coe�cientes, os outros sendo nulos.

Se este objetivo for alcançado, o número de coe�cientes que deverão ser armazenados

(ou transmitidos) será altamente reduzido.

Codi�cação por transformada [2] é o nome dado a técnicas de compressão de

imagens que aplicam modi�cações na representação de sinais no sentido de minimizar
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redundância. A Figura 2.2 introduz as três operações básicas da codi�cação por

transformada.

Figura 2.2: Operações d codi�cação por transformada.

A transformação da imagem em um conjunto de coe�cientes com pouca re-

dundância é o primeiro passo do processo de compressão. Simultaneamente, ela

minimiza a correlação entre coe�cientes e maximiza a concentração de energia. No

entanto, a obtenção de uma matriz com muitos zeros não é su�ciente para reduzir

o número de bits necessários para a reconstrução do sinal.

É interessante enfatizar que valores de pixels geralmente variam entre 0 e 255,

i.e, cada pixel é representado por 8 bits. Entretanto, após aplicada uma transfor-

mação, os coe�cientes podem assumir valores arbitrários em ponto-�utuante. Além

disso, estas operações usualmente geram um grande número de coe�cientes muito

pequenos, mas não nulos.

Ambos estes problemas são solucionados durante o procedimento de quantização,

que tem como objetivo representar uma grande faixa de valores a partir de um

conjunto relativamente pequeno de símbolos. Apesar de diminuir fortemente a taxa,

este processo geralmente acarreta perdas de informação.

O último passo tem como objetivo mapear os símbolos na menor seqüência de

bits possível. Este procedimento, denominado codi�cação, leva em consideração

as características estatísticas dos símbolos e a posição na matriz dos coe�cientes

signi�cativos (não negativos).

Maiores detalhes sobre cada uma destas etapas, assim como a descrição de dois

dos principais padrões de compressão de imagem, encontram-se no Apêndice B.
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2.2 Classi�cação de Técnicas de Compressão

Muitos autores distinguem entre técnicas de compressão sem perdas e com perdas, a

primeira indicando representações inversíveis e, a segunda, representações nas quais

parte da informação é perdida. Como a quantização envolve distorções, �ca claro

que este trabalho está focado em esquemas de compressão com perdas.

Justi�ca-se o uso deste tipo de compressão para imagens, pois métodos com per-

das possibilitam menores taxas, e o sistema visual humano não é sensível a pequenas

distorções.

Também é possível classi�car a compressão em não-linear e linear. A primeira

explora a esparsidade de uma dada imagem antes de quantizar e codi�cá-la e, a

segunda, é cega, i.e., não é necessário saber a priori a posição dos coe�ciente signi-

�cativos.

Em outras palavras, se A e B são imagens e Â e B̂ são suas versões comprimidas,

a compressão linear de A + B resulta em Â + B̂. Já em esquemas de compressão

não lineares, esta propriedade não pode ser garantida.

Na Figura 2.3 compara-se a reconstrução da imagem lena com 1 de cada 10

coe�cientes usando compressão via DCT1 linear e não-linear. Em 2.3(c) zera-se os

menores coe�cientes da transformada DCT e em 2.3(e) zera-se os coe�cientes da

DCT que não estão posicionados no canto superior esquerdo da matriz de trans-

formada. As imagens 2.3(d) e 2.3(f) são reconstruídas a partir da DCT inversa de

2.3(c) e 2.3(e), respectivamente. Pode-se concluir que, apenas de métodos não linea-

res serem mais simples e não exigirem o armazenamento da posição dos coe�cientes

signi�cativos, sua e�ciência é razoavelmente menor.

1A Tra Transformada Discreta de Cosseno (Discrete Cosine Transform - DCT) está descrita

no Apêndice B.
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(a) Imagem Original. (b) Transformada DCT de (a).

(c) Coe�cientes mais signi�cativos de (b). (d) Imagem reconstruída a partir de (c).

(e) Coe�cientes de (b) no canto superior esquerdo.(f) Imagem reconstruída a partir de (e).

Figura 2.3: Exemplo de imagem reconstruída com 1 de cada 10 coe�cientes via DCT

linear e não-linear.
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Capítulo 3

Representações de Sinais

Representação é um aspecto fundamental em processamento de sinais que propõe a

descrição completa e não ambígua de um sinal como uma seqüência de coe�cientes.

A importância deste procedimento pode ser associada à natureza contínua de sinais

existentes, que precisa ser superada para possibilitar o processamento digital.

Discretização, no entanto, não é o único benefício buscado. Boas representações

de sinais possibilitam uma série de processos, como análise, �ltragem de ruído e

compressão. A idéia é que, dependendo de como um sinal é descrito, alguns de seus

aspectos podem ser enfatizados, i.e, pode-se distribuir as informações de interesse

entre componentes especí�cos e, assim, facilitar o acesso às mesmas.

Neste capítulo, serão exploradas diferentes maneiras de representar sinais e serão

analisadas suas características básicas assim como métodos de reconstrução. Maiores

detalhes sobre este assunto encontram-se no Apêndice C.

3.1 Paralelo com Compressão de Imagens

No capítulo anterior, foi estudada a codi�cação por transformada como um método

de comprimir imagens expondo a mesma informação em um número menor de coe�-

cientes. É interessante constatar que explorar redundância no sentido de mapear os

dados em um conjunto de coe�cientes menos correlacionados é equivalente a escolher

uma nova representação para o sinal.
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3.2 Decomposições de Sinais

De�nimos uma representação como uma função R : H → S que mapeia um espaço

de Hilbert1 H em um espaço de seqüências. Para um dado sinal, x ∈ H, sua

representação R(x) é uma seqüência:

R(x) = (s1, s2, s3...) ∈ S

onde sn é um par (αn, gγn), o primeiro representando um coe�ciente e, o segundo,

uma forma de onda.

Associado a R está um conjunto de funções D = (gλ)λ∈Γ denominado dicionário.

Note que o dicionário pode ser não enumerável. Entretanto, (gγn)n∈Z, usado na

representação de um sinal particular x, consiste em um subconjunto enumerável.

Em alguns casos, a função R é inversível e o sinal x pode ser perfeitamente

reconstruído com base em sua representação R(x). Quando isto ocorre, diz-se que

a representação é exata e o sinal original é obtido a partir da combinação linear

x =
∑
n∈Z

αngγn

No entanto, quando a representação não é exata, é possível fazer uso de certas

técnicas para aproximar a reconstrução de x.

A dimensão N de um espaço H está associado ao número de elementos do dici-

onário que são necessários para a geração do mesmo. Um bom esquema de repre-

sentação exige o uso de um dicionário completo, i.e., qualquer função em H pode

ser expandida como a combinação das funções (gλ)λ∈Γ. É notável, porém, que o

tamanho do dicionário pode ser maior que N. Neste caso, diz-se que o dicionário

é redundante pois existe mais de uma forma para representar o mesmo sinal. É

importante enfatizar que, em alguns casos, trabalha-se com dimensões in�nitas.

1Um espaço de Hilbert é um espaço com produto interno que é completo como espaço métrico,

i.e., um espaço vetorial abstrato no qual distâncias e ângulos podem ser medidos e que é completo,

signi�cando que se uma seqüência de vetores tente a um limite, este limite também pertence ao

espaço.
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Portanto, para a decomposição de um sinal, é necessário obter a seqüência de

formas de onda do dicionário (gλn)n∈Z e os coe�cientes correspondentes. Existem

muitos métodos que atingem este objetivo explorando propriedades de determinados

tipos de sinais, como mencionado anteriormente.

Em seguida, serão distinguidos dois modelos de representação: bases e frames.

3.2.1 Bases

Uma base é um conjunto de elementos linearmente independentes (φλ)λ∈Γ que geram

o espaço de Hilbert H. Note que a independência linear implica que o conjunto seja

mínimo.

3.2.2 Frames

Frames são generalizações do conceito de bases. Um frame consiste em uma família

de vetores (φλ)λ∈Γ que caracteriza qualquer sinal x em um espaço de Hilbert H a

partir de seu produto interno {〈x, φλ〉}λ∈Γ, onde o conjunto de índices Γ pode ser

�nito ou in�nito.

A teoria de frames, desenvolvida por Du�n and Schae�er, determina uma con-

dição para que o frame de�na uma representação completa e estável:

De�nition 1. Uma seqüência (φλ)λ∈Γ é um frame de H se existem duas constantes

A > 0 e B > 0 tal que para cada x ∈ H

A‖x‖2 ≤
∑
λ∈Γ

|〈x, φλ〉|2 ≤ B‖x‖2

Quando A = B diz-se que o frame é apertado.

É importante enfatizar que a representação por frame pode ser redundante.

3.3 Teoria de Aproximação

A possibilidade de gerar representações a partir de diferentes bases é útil para pro-

cessamento de dados, uma vez que permite a aproximação de certos tipos de sinais

por apenas poucos vetores.
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3.3.1 Aproximação em uma Base Linear

Dado um sinal x e uma base ortogonal B = (φλ)λ∈Γ, uma aproximação projeta x

sobre M vetores da base

xM =
∑
n∈IM

〈x, φn〉φn (3.1)

A escolha dos M vetores pode ser feita a priori ou a posteriori (dependendo do

sinal x). No primeiro caso, a aproximação é dita linear e, no segundo, não-linear.

Apesar de aproximações lineares serem mais simples de implementar, distorções

geradas dependerão altamente do sinal de entrada, enquanto, no caso não-linear, os

vetores de projeção podem ser adaptados de forma a minimizar o erro de aproxima-

ção.

3.3.2 Aproximação em Dicionários Super-completos

Expansão linear em uma única base pode não ser e�ciente, pois a informação estará

diluída ao longo de toda a base. Em dicionários super-completos, entretanto, é

possível expressar o mesmo sinal usando um número menor de coe�cientes. Mallat

ilustra esta idéia [3] comparando representações de sinais a vocabulários lingüísticos.

Enquanto um pequeno vocabulário pode ser su�ciente para expressar qualquer idéia,

em alguns casos, serão necessárias frases inteiras para substituir palavras disponíveis

apenas em dicionários maiores.

Devido à redundância, existem, no entanto, maneiras inumeráveis de representar

um mesmo sinal. Por consequência, o objetivo de técnicas que usam estes dicionários

é encontrar uma representação que concentre a informação em um pequeno número

de coe�cientes.
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Capítulo 4

Amostragem Compressiva

(Compressive Sensing)

Até o momento, estudamos o paradigma de amostragem seguido de compressão,

i.e., para uma dada imagem, encontra-se uma representação esparsa e, em seguida,

codi�ca-se os coe�cientes. A desvantagem deste método deriva da necessidade de:

• armazenar um grande número de amostras;

• computar todos os coe�cientes da transformada; e

• encontrar a localização dos maiores coe�cientes.

Este é o procedimento utilizado em grande parte dos instrumentos de captura

de dados modernos. Câmeras digitais comuns, por exemplo, capturam um grande

número de amostras (i.e., da ordem de mega-pixels), mas apenas armazenam uma

versão comprimida da imagem no formato JPEG. Logo, esta técnica desperdiça a

maior porcentagem dos dados adquiridos e, portanto, constata-se uma perda de

e�ciência.

Isto sugere que métodos mais inteligentes e computacionalmente menos custosos

podem ser aplicados para solucionar o problema de aquisição de informação. Neste

contexto, surge Compressive Sensing, que se baseia na amostragem do sinal original

a uma taxa razoavelmente menor que o limite de Nyquist e na reconstrução por

meio de otimização convexa.
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4.1 Aspectos Essenciais

O objetivo é construir um esquema de aquisição que capture a imagem já em sua

forma comprimida. Considere, por exemplo, o método de compressão baseado na

transformada DCT. Se fosse conhecida a priori a posição dos coe�cientes mais sig-

ni�cativos da DCT (como em um esquema linear de compressão), seria possível

simplesmente medir seus valores e desconsiderar a exploração de outras informa-

ções.

Note que a palavra amostra assume um novo signi�cado. Neste contexto, substitui-

se amostragem pontual por medidas lineares mais genéricas dos sinais. Cada medida,

ym do sistema de aquisição é o produto interno do sinal x com uma função de teste

diferente φm (por exemplo, uma coluna da matriz de transformada DCT). Ou seja,

y1 = 〈x, φ1〉 , y2 = 〈x, φ2〉 , . . . , yM = 〈x, φM〉

onde M é o número de medidas.

Entretanto, como foi visto nos capítulos anteriores, aproximações lineares geral-

mente apresentam desempenhos que estão longe do ótimo. Assim, apesar de x ser

esparso em algum domínio, não se pode saber com certeza onde se encontram os

coe�cientes signi�cativos. Além disso, é desejável obter um solução não-adaptativa

para o problema de forma a possibilitar o uso do mesmo procedimento de captura

para qualquer sinal.

4.1.1 O Problema Algébrico

Seja s um sinal representado em um domínio esparso, i.e,

s = Ψx

onde x é o sinal original e Ψ é a transformação que torna s esparso, por exemplo, a

DCT.

Tomar poucas medidas equivale a multiplicar x por uma matriz gorda1 ΦΩ, como

1Usamos o termo gorda para fazer referência a matrizes onde o número de colunas excede o

número de linhas.
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ilustrado na Figura 4.1, onde cada linha corresponde a uma função de medida φm.

Figura 4.1: A matriz de aquisição. (Extraída de [4].)

y = ΦΩx

x = Ψ∗s⇐⇒ s = Ψx

y = ΘΩs, where ΘΩ = ΦΩ ·Ψ∗

O algoritmo de reconstrução envolve encontrar x tal que y = ΦΩx, ou, analo-

gamente, s tal que y = ΘΩs. Este problema, no entanto, é mal condicionado, pois

existe uma in�nidade de soluções possíveis. Apesar isso, nem todas as soluções satis-

fazem a propriedade de esparsidade de s e, portanto, uma escolha simples consistiria

em procurar, entre todas as soluções possíveis, aquela que torna s esparso.

4.1.2 Esparsidade e a Norma l1

Esparsidade pode ser descrita a partir da norma l0

‖α‖l0
= ] {i : α(i) 6= 0}

Por conseqüência, a solução desejada é

min
x
‖Ψx‖l0

sujeito a ΦΩx = y

Ou, alternativamente,

min
s
‖s‖l0

sujeito a ΘΩs = y
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Apesar deste problema ser combinatório e NP-complexo, é possível provar que

sinais esparsos possuem normas l1 relativamente pequenas. A Figura 4.2 motiva a

relação entre esparsidade e norma l1.

Figura 4.2: Esparsidade e norma l1.

Considere a busca pelo sinal s que possua a menor norma l0 e respeite a equação

linear que restringe sua posição em R2 à linha pontilhada. Note que a minimização

da norma l2 gera como solução ótima s = b, que está distante das soluções esparsas

α and β. Por outro lado, a minimização da norma l1 resulta em s = α, que é a

solução exata desejada.

A norma l1 é convexa, o que torna o problema de otimização computacionalmente

tratável. Sendo assim, as análises e resultados enunciados a seguir serão baseados

na minimização desta norma.

4.1.3 O Algoritmo de Reconstrução

A partir deste ponto, pode-se entender a idéia de Compressive Sensing em termos

de seu algoritmo de reconstrução. A teoria envolve tomar apenas poucas medidas de

um sinal e recuperá-lo a partir da solução de um problema do otimização convexa
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min
s
‖s‖l1

sujeito a ΘΩs = y

Apesar de estarem claro os motivos que justi�cam o uso deste procedimento,

ainda é necessário avaliar sua e�ciência. Como é possível garantir que a solução

esparsa é aquela que reconstrói o sinal original? Quais as características que devem

ser assumidas a respeito da matriz de medidas e do número de amostras? Que tipos

de resultados podem ser garantidos?

Uma série de teoremas e de�nições foram propostos com o objetivo de formalizar

esta idéia e especi�car condições que garantam bons resultados. Eles serão discutidos

na próxima seção. Detalhes sobre o surgimento da teoria e relações com conceitos

previamente estabelecidos encontram-se no Apêndice D.

4.2 Aspectos Teóricos

Usaremos para este estudo duas abordagens diferentes:

• CS Básico - teoria que estipula restrições para a recuperação exata de sinais

esparsos.

• CS Robusto - expansão da abordagem anterior para possibilitar aplicações de

CS a sinais que não são exatamente esparsos e cujas medidas estão corrompidas

por ruído.

4.2.1 CS Básico

CS Básico lida com a análise de restrições que garantem a perfeita reconstrução a

partir da minimização da norma l1, considerando que existe um domínio no qual o

sinal x é S-esparso2 e que as medidas não estão corrompidas por ruído.

2Notação:

Usamos x para fazer referência ao sinal de entrada e s para denotar a representação S-esparsa. T

é o subconjunto de RN ao qual s pertence e possui tamanho |T | = S. Ω é o subconjunto randômico

onde as medidas são tomadas e têm tamanho |Ω| = M .
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Uma importante de�nição utilizada para a formalização da teoria de CS é a

coerência, que de�ne uma medida da correlação entre as funções de sensoriamento,

φk, e as funções que geram o domínio onde o sinal é esparso, ψk. A de�nição segue

assumindo que ambos têm norma l2 unitária.

De�nição 1 (Coerência entre Ψ and Φ [5]).

µ(Φ,Ψ) =
√
N max

i,j
|〈φi, ψj〉| , ‖φi‖l2 ‖ψi‖l2 = 1

Também pode-se de�nir coerência a partir da matriz Θ.

De�nição 2 (Coerência mutua [6]).

µ(Θ) =
√
N max

i,j
|Θi,j|

É importante constatar que melhores resultados são obtidos quando a coerência

é pequena, i.e., quando os dois domínios são altamente descorrelacionados. Esta

observação pode ser motivada pelo grande número de coe�cientes nulos que são

retornados quando amostras são feitas diretamente no domínio onde o sinal é esparso.

A vantagem da incoerência é que, ao adquirir uma série de combinações aleatórias

das entradas, aprende-se algo novo sobre o sinal esparso a cada medição.

Com base nesta de�nição pode-se enunciar o principal teorema de CS básico.

Denota-se por Φ a matriz que gera RN , onde cada linha é uma função de medição φm que será

aplicada ao sinal x. Assim, tomar poucas amostras equivale a fazer

y = ΦΩx

onde ΦΩ é uma matriz gorda gerada a partir da seleção aleatória de M linhas de Φ. Como x é

esparso no domínio Ψ, a representação esparsa de x é dada por

s = Ψx

E portanto, como Ψ é uma matriz unitária (transformação ortogonal),

y = ΦΩΨ∗s

⇒ y = ΘΩs, where ΘΩ = ΦΩΨ∗

Também denota-se Θ = ΦΨ∗ e ΘΩT é a matriz gerada a partir da extração das S colunas de ΘΩ

correspondentes aos índices de T .
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Teorema 1 ([7]). Seja Θ uma matriz ortogonal N ×N e µ(Θ) como de�nido pre-

viamente. Fixe o subconjunto T do domínio do sinal. Escolha um subconjunto Ω do

domínio de medições de tamanho M e uma seqüência de sinais z em T uniforme-

mente aleatória. Suponha que

M ≥ C0 · |T | · µ2(Θ) · log (N)

para uma constante numérica C0. Então, para qualquer função s em T com sinais

correspondendo a z, a recuperação a partir de y = ΘΩs e a solução de

ŝ = min
s∗

‖s∗‖l1
subject to ΘΩs

∗ = y

É exata (ŝ = s) com altíssima probabilidade.

4.2.2 CS Robusto

Geralmente, sinais naturais não são esparsos, mas são aproximadamente esparsos ou

possuem um decaimento exponencial. Além disso, as medições não são perfeitas e

geralmente algum nível de ruído é adicionado a elas. Para que a teoria de CS possa

ser aplicada a situações reais, ela deve ser robusta a dois tipos de erros. Por isso,

grande esforço foi feito no sentido de de�nir condições e teoremas que garantam a

expansão da teoria.

Nesta seção, serão apresentados teoremas que garantem a robustez de CS a

aplicações nas quais:

• o sinal não é exatamente esparso; ou

• medições estão corrompidas por ruído.

Para isto é necessário de�nir a Propriedade de Isometria Restrita (Restricted

Isometry Property - RIP).

De�nição 3 (Constante de Isometria Restrita [8]). Para cada inteiro S = 1, 2, . . . , N

de�ne-se a constante de isometria S-restrita δS de uma matriz ΘΩ como o menor

número tal que

(1− δS)‖s‖2
l2
≤ ‖ΘΩT s‖2

l2
≤ (1 + δS)‖s‖2

l2
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para todos vetores S-esparsos.

A isometria restrita é uma propriedade da matriz de medições ΘΩ que se refere à

existência e limitação de δS. A RIP estabelece uma condição que, se obedecida por

ΘΩ, garante a recuperação de sinais esparsos. Note que a constante δS é intrínseca

à estrutura de ΘΩ e, portanto, ao de�nir restrições para seu tamanho, é possível

quanti�car a e�ciência da matriz de aquisição.

A razão do nome RIP é simples: a energia do sinal restrito ao conjunto Ω é

proporcional ao tamanho de Ω. No entanto, alguns autores o descrevem esta pro-

priedade como um Princípio Uniforme da Incerteza (Uniform Uncertainty Principle

- UUP) porque ela garante que o sinal não pode ser concentrado, simultaneamente,

em ambos os domínios de esparsidade e de medições.

Seja s um sinal apenas aproximadamente esparso e sS a melhor aproximação

S-esparsa de s, i.e, o resultado obtido quando força-se os N−S menores coe�cientes

de s a serem zero. Considere também que as medidas y estão corrompidas pela

adição de um ruído n limitado por ‖n‖l2 ≤ ε, i.e.,

y = Φx+ n

A partir da propriedade RIP, pode-se enunciar o seguinte resultado.

Teorema 2 ([9]). Considere que y = ΘΩs + n onde ‖n‖l2 ≤ ε. Assim, se δ2S <
√

2− 1, a solução ŝ para

ŝ = min
s
‖s‖l1

subject to ‖ΘΩs− y‖l2 ≤ ε

obedece

‖ŝ− s‖l2 ≤ C0s
−1/2 · ‖ŝ− sS‖l1 + C1ε

para valores razoáveis das constantes C0 e C1.

É importante observar que o erro de reconstrução é uma superposição de dois

fatores: erros gerados pela aproximação da esparsidade e erros que resultam do ruído

aditivo.

Maiores detalhes sobre estes teoremas encontram-se no Apêndice E.
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4.3 Resultados

No Apêndice F, teoria de CS é veri�cada por meio de exemplos.

Apesar das imagens estarem já armazenadas no computador como uma matriz

de pixels, métodos de aquisição são simulados a partir de medições que envolvem

combinações lineares destes coe�cientes.

Diferentes abordagens para a aquisição são avaliadas em termos de sua Variação

Sinal Ruído de Pico (Peak Signal to Noise Ratio - PSNR) para diferentes quantidades

de medidas, M .

O procedimento foi baseado nos resultados obtidos por [10] e os algoritmos de

otimização utilizados foram baixados de http://www.acm.caltech.edu/l1magic [11].

desvantagem deste método deriva
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Capítulo 5

Conclusões

Durante este trabalho, a teoria de Compressive Sensing foi introduzida como um

novo paradigma para a aquisição de imagens. Nosso estudo envolveu a revisão de

procedimentos padrões de sensoriamento e compressão com a intenção de familiarizar

o leitor e motivar aplicações.

Foram analisados os mais importantes teoremas e de�nições que formalizam a

teoria de CS e foram discutidos alguns argumentos relevantes que justi�cam a e�ci-

ência do procedimento. Finalmente, exemplos relacionados à compressão de imagens

foram produzidos, possibilitando a avaliação da técnica em diferentes cenários .

Observou-se que diversos ajustes precisam ser feitos para possibilitar aplicações

de CS a condições modernas de aquisição de dados, uma vez que a taxa de compres-

são do método é signi�cativamente menor que a de modelos padrões de compressão

e a estratégia de recuperação da informação é computacionalmente mais cara.

No entanto, nota-se que esta teoria tem muito potencial, uma vez que contraria

os cânones da área e, desta forma, permite uma nova interpretação do problema de

aquisição de dados. Isto sugere que aplicações em diferentes áreas podem e devem

ser experimentadas.
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5.1 Trabalhos Futuros

Em muitas publicações recentes [12, 13, 14], pesquisadores substituíram a norma l1

pela norma de variação total(total-variation - TV). Face à relação entre a norma TV

e o gradiente da norma l1, há uma suposição comumente encontrada na literatura

que os teoremas ainda são válidas sob esta condição [15]. A minimização da norma

TV é muito e�ciente quando aplicada a imagens, pois sugere certa suavidade que

é normalmente encontrada em imagens naturais. Uma extensão deste estudo deve,

portanto, considerar esta abordagem.

Também seria interessante experimentar alternativas para medições a partir de

Noiselets. No futuro, pretendemos testar aquisição a partir de matrizes aleatórias

com distribuição Gaussiana e funções de Whash-Hadamard.

A escolha de Wavelets ortogonais é decorrente da estrutura do algoritmo de

reconstrução, que exige as matrizes Θ e sua transposta como entrada. Embora Wa-

velets biortogonais sejam mais adequadas para reforçar a esparsidade, as matrizes

correspondentes a suas transformadas não são auto-adjuntas, tornando a imple-

mentação bastante difícil. No futuro, uma análise mais cuidadosa das ferramentas

disponíveis no pacote L1-Magic permitirá a utilização de matrizes não auto-adjuntas.

Também será interessante veri�car como CS se comporta quando a imagem é

dividida em blocos. Em todos os teoremas enunciados, o número de amostras neces-

sárias cresce com um fator logN . Apesar de pesquisadores a�rmarem que podemos

esperar uma recuperação para a maioria dos sinais em mais de 50 % dos casos se

M ≥ 4S [12], seria interessante considerar aquisição de imagens muito grandes e

comparar o desempenho do método com e sem o particionamento em blocos. bra-

zilian
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Appendix A

Introduction

Acquisition and reconstruction are essential in every signal processing system and

sampling theorems are responsible for the bridge between continuous and discrete

domains. The most important theorem that sets a limit to the sampling rate guar-

anteeing recovery is the Shannon-Nyquist theorem for band-limited signals.

We know, however, that natural and manmade signals tend to be compressible,

i.e., if point sampled many of the acquired coe�cients will be redundant. Hence,

a lot of e�ort has been made in order to rewrite the sampled data reducing the

number of bits required to represent it. These schemes perform what is referred to

as compression.

The sample-then-compress framework is very e�cient and is used in many ap-

plications with a good performance. However, the fact that we are able to compress

the acquired data, suggests that Nyquist was a pessimist, who considered the worst

case scenario in which all that is known is that the signals are band-limited. But

what if, instead of considering the Nyquist rate, we would try to recover the data

by sensing at the information rate?

This is what Compressive Sensing is about. It comes out as a new paradigm for

data acquisition that rises against the common knowledge of the �led. In truth, it

gives a stable and robust algorithm that allows sensing at rates much smaller then

the Nyquist limit and recovering the signals with little corruption.

The basic idea is that compressibility translates in the existence of a represen-
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tation in which the signal is sparse (most coe�cients are zero). Therefore, while

taking only a small number of samples would make the recovery problem ill-posed

(an in�nite number of solutions would be available), the compressibility property

allows us to search in all possible solutions the one that makes the recovered signal

sparse.

Of course, there is a twist in the word "sample". We cannot point sample the

signal and hope to reconstruct it with very a small number of measurements because,

once it is sparse, most of our acquired data will be zero. Instead, we measure the

signal by calculating its inner product against di�erent test functions.

Compressive sensing is intriguing not only because it proves that it is possible to

reconstruct a signal with a very small number of measurements but also because it

is nonadaptive. By this we mean that the algorithm is completely blind, not needing

to guess characteristics of the original object (apart from sparsity). Moreover, the

solution is obtained by means of a linear program that solves a convex optimization

problem.

A.1 Objectives

We were motivated to study CS, not only because it is a novel idea that has had a

great impact in the academic community, but also because it is a very rich theory

that covers interesting mathematical tools as well as notions of acquisition, com-

pression, dimensional reduction and optimization.

The intention of this project is to develop a presentation of the fundamental

aspects involved in CS which may be used as a bibliographic guide for those who are

initiating on this �eld. Therefore, the relevance of this work is in the introduction

of the study of CS in the Federal University of Rio de Janeiro and the stimulation

of related research projects.

Moreover, we were careful to elaborate examples of applications in di�erent ac-

quisition scenarios. The latter allowed us to answer a few interesting questions and

evaluate the performance of the technique.
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A.2 Organization

In Appendix B, we consider the classic methods for image compression which apply

the sample-then-compress framework. We study schemes that make use of trans-

forms (as the DCT and Wavelets) in order to exploit signal redundancy and map

the data in coe�cients that are less correlated and, therefore, sparse.

Growing in abstraction levels, this compression paradigm is related in Appendix

C to signal representation and reconstruction models. The latter are then studied

with emphasis in approximation theory.

With the former analysis, the stage is set for the investigation of Compressive

Sensing. Nevertheless, before we examine the fundamental theorems, some e�ort is

made in Appendix D to intuitively justify the combination of sensing and compres-

sion in a single procedure.

Based on the de�nition of the reconstruction algorithm, we must establish the

characteristics that, imposed to the acquisition model, guarantee good performances.

Hence, in Appendix E, a few parameters are de�ned and several theorems that

evaluate CS in di�erent contexts are exposed.

In Appendix F, we verify the CS theory by means of examples. We consider

applications for image compression in scenarios where the signal is either sparse or

only approximately sparse, as well as when measurements are corrupted by Gaussian

and quantization noise.

In Appendix G we present some conclusion and directions for future work.
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Appendix B

Image Compression

During the last decades we have been experiencing a multimedia revolution that has

enabled us to access large amounts of data in adverse situations. A key ingredient

that has made these technologies possible is the ability to express information in a

compact form.

Data compression, therefore, aims at reducing the number of bits required to

represent a signal by exploiting structures in the data (such as sparsity and redun-

dancy) and characteristics of the users (such as the limited perceptual abilities of

human beings).

To evaluate compression e�ciency, it can be taken into account properties of the

algorithm (complexity, velocity, memory consumption), the amount of compression,

and how closely the reconstruction resembles the original.

In this work, we will focus on the rate-distortion criteria, that evaluate the trade-

o�s between the average number of bits used to represent each sample value and

a quanti�cation of the di�erence between the original signal and its reconstruction

after compression.

Figure B.1 illustrates a rate-distortion function R(D) that speci�es the lowest

rate at which the output of a source can be encoded while keeping the distortion

less than or equal to D. This function is very useful because it de�nes a bound

and therefore a way to determine optimality given a particular source. It will not

always be possible to design optimal compression scheme and thus the goal of many
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Figure B.1: The rate-distortion function.

researchers in this area is to improve performance by approaching the R(D) curve.

In this appendix, we will overview the basic elements in compression techniques

and some popular standards for image compression.

B.1 Transform Coding

Most signals observed in nature are, in some way, compressible. This is not surpris-

ing if we consider that redundancy plays an important role in facilitating human

perception. For example, it is easier and more pleasurable to read a text with rep-

etitions, listen to songs that do not have many abrupt variations, and watch videos

with trivial di�erences between frames. The same thing occurs with images, where

adjacent pixels tent do be very similar. In Figure B.2, one can compare a redundant

image (left) with a non-redundant one (right).

The existence of redundancy indicates that storing an image as a matrix in which

each coe�cient is the intensity of the correspondent pixel is ine�cient because many

will be equivalent.

The solution is to �nd a sparse representation, i.e., a representation in which the

information is concentrated in only a few signi�cant coe�cients, the rest being zero

valued. If this is accomplished, the number of coe�cients that needs to be stored

(or transmitted) will be largely reduced.

Transform coding [2] is the name given to data compression techniques that

employ changes in signal representations to minimize redundancy. Figure B.3 intro-
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(a) Image lena. (b) White Gaussian noise.

Figure B.2: In the image lena, pixels that are not in the boundary region are very

similar to adjacent ones. The white noise, however, is not compressible. (Extracted

from [1].)

duces the three basic operations of transform coding.

Figure B.3: Transform coding operations.

The transformation of the image into a set of less redundant coe�cients is the

�rst step of the compression procedure. Simultaneously, it minimizes the correlation

among coe�cients and maximizes the energy concentration. Nevertheless, obtaining

a matrix with many zeros is not enough to reduce the number of bits required for

signal reconstruction.

It is interesting to point out that pixel values usually range between 0 and 255,

i.e, each pixel is represented by 8 bits. After applying a transformation, however, the

coe�cients can assume arbitrary �oating-point values. Moreover, transformations

often generate many very small coe�cients instead of just zero-valued ones.

Both of these problems are resolved during the quantization step, which aims at

representing a large range of values by a relatively small set of symbols. Though

this strongly reduces the rate, it often leads to information loss.
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The last step aims at mapping the symbols in the smallest stream of bits possible.

This procedure, called encoding, takes into account the statistic characteristics of

the symbols and the positions of the signi�cant (non-zero) coe�cients in the matrix.

A simple illustration of a coding scheme that uses a transformation operation is

the Di�erential Pulse Coded Modulation (DPCM). The fact that, in most natural

images, adjacent pixels tend to have similar values indicates that a good compression

scheme would involve transmitting the di�erence between adjacent pixel instead of

the original values.

This is the procedure of the DPCM, which uses as an estimate the value of

the adjacent right pixel and transmits only the di�erence between the two. The

advantage is that the values will now concentrate around zero and therefore more

e�cient quantization and coding schemes can be employed.

Notice that, without quantization and coding, this procedure, instead of reducing

the output bit stream, enlarges it, because the pixel values which before transfor-

mation were between {0, 255}, range between {−255, 255} after it.

In the following sections, we will study in more detail and will exemplify these

three basic operations.

B.2 Transformation

From what was just mentioned, we conclude that the goal of the transformation step

is to exploit information redundancy so as to adapt the signal in order to facilitate

e�cient quantization and encoding.

These are usually linear transforms that are applied to a sequence of inputs. In

images, we have to partition the array of pixels into blocks of size N which will then

be mapped to a transform sequence, as shown in �gure B.4. The size of N is dictated

by practical considerations. While large blocks will allow a greater number of zero

coe�cients, transform complexity grows more than linearly with N and statistical

characteristics change abruptly (images are not stationary signals but we can assume

stationary in a block if N is small).
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Figure B.4: Partition of an image array into blocks of size N = 6 and the sequence

of correspondent vectors.

Let us now analyze three very common transformations and their applications

in image compression.

B.2.1 Karhunen-Loève Transform (KLT)

KLT [16] is referred by many authors as PCA (Principal Components Analysis). In

general, if we partition an image into blocks of size N and then represent each block

as a vector in RN , the correlation between the coordinates will be very large, as

shown in Figure B.5.

The idea of KLT is to rotate the axes in order to minimize the correlation, which

can be interpreted as redundancy between coe�cients, and consequently increase

energy concentration.

The basis vectors of the KLT transform are given by the orthonormalized eigen-

vectors of its autocorrelation matrix. This indicates a drawback to this technique:

it is functionally dependent on the input data.

B.2.2 Discrete Cosine Transform (DCT)

The DCT [16] is very similar to the Fourier transform in the sense that it provides

a spectral analysis of the signal. It has, however, a few properties, that make it

interesting for applications in compression.

The cosine transform is very closely related to the KLT of a �rst-order stationary

Markov sequence when the correlation parameter is close to 1 and therefore, provides
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Figure B.5: Each image block is represented in (a) as a vector in R2, and the on the

KLT transform shown in (b) each vector [a b]T = ax1 + bx2 will be represented by

[c d]T = cy1 + dy2. (Extracted from [1].)

excellent energy compaction for highly correlated data.

Moreover, it is a real transform that can be implemented by a fast algorithm and

is data independent.

We represent an image in the DCT domain by a matrix where each coe�cient is

given by

Xk1,k2 = α1(k1)α2(k2)

N1−1∑
n1=0

N2−1∑
n2=0

xn1,n2 cos

[
π

N1

(
n1 +

1

2

)
k1

]
cos

[
π

N2

(
n2 +

1

2

)
k2

]
where xn1,n2 is the value of the pixel at (n1, n2) and

αi(k) =
√

1
Ni
, if k = 0

αi(k) =
√

2
Ni
, if k 6= 0

Notice that the �rst coe�cient corresponds to the average signal level (DC value)

of the signal and greater frequencies are associated with higher coe�cients.

Figure B.6 illustrates the transformation applied to the image lena. To simplify

the example, block partitioning was not used. A better result would have been

achieved if we had applied the DCT individually to N ×N blocks.
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(a) Original image. (b) DCT transform of (a).

(c) The most signi�cant coe�cients of (b). (d) Image reconstructed form (c).

Figure B.6: Example of image reconstructed with 1 out of 10 coe�cients: we set

to zero the smallest values of the DCT transform and reconstruct the image by

applying an inverse DCT. We observe that, since many DCT coe�cients are close

to zero, the distortion is rather small.

B.2.3 Discrete Wavelet Transform (DWT)

While the time domain describes the way a signal varies in time and its Fourier

transform sheds light to the frequencies distribution, the Wavelet transform can be

interpreted as a way to extract information from a signal concerning both time and

frequency. A �rst approach to achieve simultaneously both features is to apply the

Fourier transform in windowed functions of the original signal x(t). This is known
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as the Short Term Fourier Transform (STFT) [17], and can be de�ned as

XF (ω, t) =

∫ −∞

∞
x(τ)g(τ − t)e−jωτdτ (B.1)

where g(t) is a window function centered in zero, with variance in time σ2
t
1, and

variance in frequency σ2
ω.

(a) STFT (b) Wavelet Transform

Figure B.7: Time × frequency plane for the STFT and Wavelet transform. (Ex-

tracted from [18].)

Notice from Figure B.7(a) and Equation B.1 that the information in (ω0, t0)

mostly depends on the values of signal x(t) in the intervals [ω0 − σω, ω0 + σω] and

[t0 − σt, t0 + σt]. The smaller σ2
t the better a feature can be localized in the time

domain, while the smaller the σ2
ω, the better the frequency resolution of the STFT.

However, the uncertainty principle states that we cannot �nd a window function g(t)

that allows both σ2
t and σ2

ω to be arbitrarily small, i.e., it is impossible to obtain

precise localization in both domains simultaneously.

Therefore, a �xed window function implies a predetermined resolution in which

information is obtained. Images, however, as well as most of the natural signals,

combine features of di�erent detail levels. Therefore, a major drawback in the STFT

is that the size of the window function is invariant.
1We calculate variance as follows

σ2
t =

∫∞
−∞ t2g(t)dt∫∞
−∞ g(t)dt
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The Wavelet transform tries to solve this problem by introducing the concept of

scale. A scale is closely related to the width of the window and represents a measure

of the amount of detail in the signal. The Wavelet transform of a signal x(t) is

the decomposition of x(t) on the basis of translated and scaled version of a mother

function Φ(t). The mother function scaled by s and translated by t is described as

follows:

Φs,t(τ) =
1√
s
Φ(
τ − t

s
)

where 1√
s
is a normalization factor.

The function Φs,t(τ) dilates and contracts as s changes, varying inversely to its

Fourier transform, as shown in Figure B.8. Therefore, the interval of the signal x(t)

that contributes to its Wavelet transform at (s, t) varies as shown in Figure B.7(b).

Figure B.8: Scaled wavelet functions and their Fourier transforms. (Extracted from

[18].)

The values of the transformed coe�cients for a given scale inform how the signal

behaves at a given resolution level. In small scales, re�nement signal details are

explored, while in large ones, coarse details are analyzed.

The redundancy generated by mapping a one dimensional signal in a two di-

mensional function indicates that recovery will still be possible after discretization

is done. A common partition of the time × frequency grid is shown in Figure B.9
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and is known as a dyadic lattice:

(s, t) ∈ {(2m, n2mt0), n,m ∈ Z}

Figure B.9: The discrete grid of the DWT. (Extracted from [17].)

In terms of signal processing, a Wavelet transform is equivalent to �ltering a

signal in di�erent subbands, each representing the signal information in a di�erent

resolution. This conclusion can be drawn from Figure B.8, where the scaled Wavelet

function is represented in the frequency domain by band pass �lters.

A common way to generate this subband decomposition is by dividing a signal

into low and high pass bands and then �ltering again the low pass channel in low

and high pass channels. The process of dividing the resulting low pass channel is

repeated until a predetermined number of stages is reached.

At each step, the low pass �ltering corresponds to a smoothing of the signal and

the removal of details, whereas the high pass corresponds to the di�erences between

the scales.

In images, the DWT is applied both to rows and columns, as shown in Figure

B.10. In this �gure we notice that most of the coe�cients are close to zero and that

the horizontal, vertical and diagonal bands are closely related. These features, allied

to the ability of dividing the information in detail levels, make the DWT interesting

for compression applications.
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(a) Original image (b) Wavelet Transform

Figure B.10: Example of 2D Wavelet transform of three stages. In (b) the coe�-

cients are represented on a grayscale, white corresponding to positive values, back

to negative and gray to zero values. (Extracted from [19].)

B.3 Quantization

Quantization [2] consists in representing a source output using one of a �nite (and

usually small) number of codewords. Since the number of codewords and the char-

acteristics of the quantizer are closely related to the level of compression and the

loss in �delity, it is essential to bear in mind a rate-distortion criteria during this

procedure.

Here we present two kinds of quantizers that di�er in terms of the set of inputs

and outputs, that can be either scalars or vectors.

B.3.1 Scalar Quantization

Scalar quantization consists in dividing the scalar input range into intervals and

assigning for each one a codeword and an output value.

Figure B.11 is an example of a linear quantizer, where all intervals have the same

size, called quantization step.

In many applications it is not e�cient to establish constant distances between
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Figure B.11: Linear quantizer input-output map.

decision and reconstruction levels. If this does not happen the quantization is called

non-linear. In most image compression standards, however, the latter is not used

because entropy coding combined with linear quantization provides a very similar

performance and is less complex to implement.

B.3.2 Vector Quantization

From what has been studied up until now and from basic results in information

theory, it is clear that encoding a sequence of outputs instead of individual samples

separately is more e�cient according to a rate-distortion criteria.

In this case, instead of quantizing each image pixel, we divide images into blocks

of size N and represent each one as a vector in RN . The output of the quantizer is a

�nite set of vectors called codebook and each block of the source output is associated

to the closest vector in the codebook, usually by applying the Euclidean norm.

The process of �nding the optimal codebook of size k for a given source set of

vectors S involves choosing the k vectors of the codebook, and the k quantization

cells - each quantization cell corresponds to the subset of S that is associated to

the kth code-vector. This procedure is not analytical because it involves two related

considerations:

• Given the quantization cells, the best codebook is constructed by extracting
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the centers of each cell.

• Given the codebook, the best quantization cells are found by assigning each

element in S to its closest vector in the codebook.

Hence, there are many algorithms for �nding the best codebook given certain

input data. Here we will describe one of the simplest, yet very popular, referred to

as LBG:

1. Initialize the codebook by selecting k vectors at random.

2. Specify the quantization cells, i.e., assign to each source output the closest

vector in the codebook.

3. Reset the codebook by selecting the centers of each quantization cell.

4. Return to step 2 unless a �nalization condition is reached.

B.4 Encoding

We refer to coding [20] as the process of assigning binary representations to the

output of a source, here referred to as alphabet. For example, the ASSCII code uses

8 bits and each of the 28 possible combinations is associated to one of the 256 letters

or punctuation marks. This is a so called �xed-length code because all symbols are

represented by the same number of bits.

To minimize the average number of bits per symbol, we should use fewer bits

to represent symbols that occur more often. This is done in the Morse code, as

illustrated in Figure B.12. Note that the smallest codeword is associated to the

letter E, which is the most used in the English language.

We measure e�ciency in terms of rate minimization by comparing the average

symbol length with the alphabet's entropy, which is a measurement of the average

information per source symbol.

Let S = {s1, . . . sK} be a given alphabet where each symbol has the probability

of occurrence pk = P (S = sk). The entropy is given by:
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Figure B.12: Morse code.

H(S) =
K∑

k=1

pk · log

(
1

pk

)
(B.2)

and the average code length by:

L̄ =
K∑

k=1

pk · lk

where lk is the size of the codeword associated to the symbol sk.

In this case, coding e�ciency is measured by:

η =
H(S)

L̄

The Shannon Theorem guarantees L̄ ≥ H(S) and therefore the optimal code

occurs when η = 1.

Along with minimizing rate, e�cient codes must be uniquely decodable, i.e.,

there must be no ambiguity between codewords. It is also desirable that the decod-

ing be instantaneous, which means that the decoder knows the moment a code is

complete without having to wait until the beginning of the next codeword.

Now we will outline two coding procedures that are often employed in image

compression standards.

B.4.1 Hu�man Code

David Hu�man developed an instantaneous code where the average symbol length

is very close to the entropy. It is based on two observations:

• Symbols with greater probability of occurrence should have smaller codewords.
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• The two symbols that occur least frequently should have the same length.

We will demonstrate this coding procedure by an example. Let S = {s1, s2, s3, s4}

be an alphabet where the probability of occurrence of each symbol is respectively

{0.5, 0.25, 0.125, 0.125}.

The symbols are arranged in order of decreasing probability and the last two

symbols are combined interactively until only one symbol is left. Figure B.13 illus-

trates this procedure and the decision tree generated by the coding strategy.

Figure B.13: Hu�man code.

Table B.1: Associated codewords generated by the Hu�man coding.

Symbol Codeword
s1 0
s2 10
s2 110
s2 111

Table B.1 displays the codewords associated to each symbol. Notice that in this

case, since the distribution of probabilities is dyadic, the code is optimal, i.e., η = 1.

B.4.2 Arithmetic Code

Though very successful in many circumstances, the Hu�man code becomes ine�cient

when a single symbol has a very large probability of occurrence. This is often the

case in small alphabets, where the obligation of using an integer number of bits to

represent each symbol, limits the reduction of the average code length.

In this case, a better performance would be achieved by blocking groups of

symbols together and generating codes capable of characterizing entire sequences of

41



symbols by a unique identi�er. This is the proposition of the arithmetic code, which

maps each sequence into the unit interval [0, 1). We will illustrate the encoding

procedure with an example.

Let S = {s1, s2, s3} be a given alphabet where each symbol has the probability

of occurrence p1 = 0.5, p2 = 0.2, p3 = 0.3. The �rst step consists in dividing the

unit interval into regions that are associated with each symbol. The size of each

region is, of course, directly related to the symbol probability, since larger regions

will require a smaller number of decimal �gures to be represented.

Figure B.14: Example o arithmetic encoding.

If the �rst symbol to be encoded is s1, then the code will be a number in [0, 0.5)

and this interval will be divided according to the alphabet's probability distribution.

This process is repeated iteratively as shown in �gure B.14, which considers the

sequence (s1, s3, s2), and the transmitted code is a number between 0.425 and 0.455,

for example the mean 0.44. The decoder procedure is also done iteratively dividing

the interval and �nding the associated symbols.

There are, however, two problems associated with arithmetic coding:

• There is no information provided as to when the decoding should stop.
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• The binary representation of a real value with in�nite precision can be in�nitely

long.

The �rst problem can be solved either by informing the decoder the size of the

sequence or by associating a region of the unit interval with an end-of-transmission

symbol. Figure B.15 illustrates the EOT symbol, that brings the decoding procedure

to a stop as soon as it is detected.

Figure B.15: The end-of-transmission symbol.

There are several approaches to solve the second problem. The simplest one

would be to encode each decimal symbol at a time, i.e., when we reach an interval

small enough to make the nth digit stop varying, it is transmitted.

B.5 Standards

In this section we will illustrate image compression by describing two very important

standards: JPEG and JPEG2000.

B.5.1 JPEG

The JPEG [2] standard uses a very popular compression technique that involves

DCT transform, followed by scalar quantization and Hu�man coding.

This procedure starts by dividing the image into blocks of size 8 × 8 which are

transformed by a forward DCT. This transformation isolates the important image

components in the upper left portion of the matrix.

The calculated coe�cients are quantized by uniform scalar quantization, where

the step size varies, increasing as we move from DC coe�cients to higher-order

coe�cients. The variation of the step size is related to the perception of the human

visual system to errors in di�erent spatial frequencies. Since the human eye is less
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sensitive to higher spatial frequencies, we can accept greater quantization errors for

the coe�cients that represent them. The following matrix shows the weight of each

quantization step, i.e., the quantization step of the coe�cient cij is qglobalQij, where

qglobal is a parameter associated with the compression rate.

Q =

266666666666666664

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

377777777777777775

The DC values are encoded separately from the AC ones because they vary little

between adjacent blocks and, thus, it is interesting to encode the di�erence between

neighbors. Therefore the DC values, i.e., the �st coe�cient of each transformed

block, are coded using DPCM followed by a Hu�man entropy encoder.

To understand the coding of the AC coe�cients it is important to analyze some

properties of the matrix that stores the quantized coe�cients of a typical DCT-

transformed image block:

C =

266666666666666664

42 26 10 0 0 0 0 0

−3 −2 0 2 −1 0 0 0

−21 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

377777777777777775

Notice that, not only is the matrix sparse, but also most of the nonzero coe�-

cients are located on its upper-left corner. These characteristics suggest a scanning

in a diagonal zigzag pattern, as shown in Figure B.16.

The JPEG standard uses run-length encoding; i.e., each nonzero value that is

scanned in the above fashion is stored as a sequence of pairs (run, length); the �rst

indicating the number of preceding zeros and the second the values of the component.

These pairs are then encoded using a Hu�man code.

A drawback of dividing the image into blocks is that coding artifacts may be

generated at block edges. This e�ect, called blockiness, is illustrated in Figure B.17

.
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Figure B.16: The zigzag scanning pattern.

Figure B.17: Example of the blocking e�ect generated by a JPEG compression with

very high rate.

B.5.2 JPEG2000

JPEG2000 [21] gains up to about 20% compression performance for medium com-

pression rates in comparison to the �rst JPEG standard, but has, however, notably

higher computational and memory demands. It involves a Wavelet transform fol-

lowed by scallar quantization and arithmetic coding.

The Wavelet transform is applied to the tilled image, where the size of the tile

can vary widely, being possible to consider the whole image as one single tile. This is

important because small tiles can generate blocking e�ects, as in the JPEG standard.
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The Wavelet coe�cients are quantized by a uniform scalar quantizer with step

size varying between subbands considering the human visual sensibility to di�erent

scaled informations. Each bit plane2 of the quantized coe�cients is then encoded

using a process called Embedded Block Coding with Optimal Truncation (EBCOT).

As studied in section B.2.3 Wavelet transform divide the image into subbands

that represent approximation scales. Notice, however, that some Wavelet coe�cients

in di�erent subbands represent the same spacial location in the image. In Figure

B.10(b), it is noteworthy that the vertical subbands approximate scaled versions of

each other, the same being true for horizontal and diagonal bands. This means that

there exists a relation between the Wavelets coe�cients illustrated in Figure B.18.

Figure B.18: Related Wavelet coe�cients.

Many algorithms, as the EZW and the SPHT codes, exploit the similarity among

bands of the same orientation in order to reduce the size of the encoded image.

JPEG2000 coding, however, does not exploit inter-subband redundancies. Instead,

the EBCOT algorithm partitions each subband into small rectangular blocks called

codeblocks and encodes each one independently.

Though there is an e�ciency loss for not exploiting the correlation between

2A bit plane of a digital discrete signal is a set of bits having the same position in the respective

binary numbers. For example, for 8-bit data representation there are 8 bitplanes: the �rst one

contains the set of the most signi�cant bits and the 8th contains the least signi�cant bits.
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subbands, this is compensated for because this method produces bit streams that

are SNR and resolution scalable. For each codeblock a separate highly scalable bit

stream is generated and may be independently truncated to any of a collection of

di�erent lengths.

The bits generated by the EBCOT algorithm are then encoded using an arith-

metic code.

B.6 Classi�cation of Compression Techniques

Many authors distinguish compression techniques as lossless or lossy, the former

referring to invertible representations and the latter to representations in which

some of the information is lost. Since quantization involves distortion e�ects, it is

clear that we have focused our study in lossy compression schemes. In terms of the

rate-distortion criteria, lossless compression would occur when the function R(D)

crosses the y-axis, i.e., when the distortion is zero.

For images we are usually interested in lossy techniques because they allow lower

rates and the human visual system is not sensitive to small distortions. An exception

to this rule would be when dealing with medical images, where the slightest error

can result in a wrong diagnosis.

Another form of classi�cation is linear and non-linear compression. To illus-

trate the di�erence between the two we will discuss the JPEG standard for image

compression.

As shown in Section B.5.1, the DCT transform results in a sparse matrix where

the signi�cant coe�cients are concentrated in the upper-left corner and an encoding

procedure called run-length coding makes use of these properties in order to reduce

the size of the output stream of bits. Another approach would be to consider that

all components in the lower-right corner are small, and so store only N values that

belong to the region of the matrix that is usually signi�cant, as shown in Figure

B.19.

This would not be as e�cient as the run-length coding because some high-
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j

j

Figure B.19: Example of region of matrix that would be selected as being signi�cant

in a linear compression scheme. (Extracted from [1].)

frequency information might be lost and zero-valued coe�cients would be unnec-

essarily stored. However this approach is interesting because the compression tech-

nique does not depend on the image, i.e., we do not need to know a priori where

the signi�cant coe�cients are before we begin encoding. This is what is referred to

in literature as linear compression. In other words, if A and B are images and Â

and B̂ are their compressed forms, the compression of A+B will result in Â+ B̂. In

non-linear compression, however, the location of the signi�cant coe�cients must be

known before the reconstruction can be accomplished and, therefore, the linearity

does not hold.

In Figure B.20 we compare the reconstruction of image lena with 1 out of 10

coe�cients using non-linear and linear DCT compression and are able o conclude

that the latter scheme is much less e�cient. In B.20(c) we set to zero the smallest

values of the DCT transform and in B.20(e) we set to zero the DCT coe�cients

that are not on the upper-left corner of the transformed matrix. Images B.20(d)

and B.20(f) are reconstructed by applying an inverse DCT to B.20(c) and B.20(e),

respectively.
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(a) Original image. (b) DCT transform of (a).

(c) The most signi�cant coe�cients of (b). (d) Image reconstructed form (c).

(e) Coe�cients of (b) on the upper-left corner. (f) Image reconstructed form (e).

Figure B.20: Example of image reconstructed with 1 out of 10 coe�cients
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Appendix C

Signal Representations

Representation is a key aspect in signal processing. It refers to describing a signal

completely and unambiguously as a sequence of enumerable coe�cients. The im-

portance of this procedure can be associated with the continuous nature of existing

signals, which has to be overcome before digital processing.

Discretization, however, is not the only bene�t we are searching for. Good signal

representations can enable a series of procedures as analysis, noise �ltering and

compression. The idea behind this is that depending on how we describe a signal

some of its aspects can be highlighted, i.e., we can distribute the information of

interest between speci�c components and therefore ease access to them [22].

In this appendix we will overview di�erent ways of representing signals and

analyze their basic characteristics and how signals can be reconstructed from them.

C.1 Parallel with Image Compression

In the former appendix, we discussed transform coding as a method for compressing

images by representing the same information in a smaller number of coe�cients. It

is interesting to point out, however, that when we exploit redundancy to map the

image data to less correlated coe�cients, we are actually choosing a new way to

represent the signal.

We can interpret an n× n image block as a vector in RN , where N = n2. In the
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bit-map representation, each of the N canonical basis vectors would corespond to

the information of a single pixel.

Since each orthonormal basis is a rotation of each other, the DCT transform is,

therefore, no more than the rotation of this basis. Notice that the DCT expands

the original image in sequence of cosines, i.e., the transformation is actually the

projection in a new orthonormal basis.

The bit-map (canonical) basis is equivalent to Dirac functions in a two dimen-

sional space, as shown in Figure C.1(a), while the DCT basis is illustraded in Figure

C.1(b).

(a) 8× 8 bit map basis. (b) 8× 8 DCT basis.

Figure C.1: Waveforms that compose the bit map and DCT bases.

Notice, however, that the DCT preserves many properties such as invertibility

and orthogonality, which cannot be guaranteed for arbitrary representations. In the

next section, we will, therefore, de�ne such representations in a more abstract and

generalized manner.
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C.2 Signal Decompositions

We de�ne a signal representation [17] by a function R : H → S that maps a Hilbert

space1 H into a space of sequences. For a given signal, x ∈ H, its representation

R(x) is a sequence:

R(x) = (s1, s2, s3...) ∈ S

where sn is a pair (αn, gγn), the �rst representing a coe�cient and the second a

waveform.

Associated with R is a set of functions D = (gλ)λ∈Γ called dictionary. Notice that

the dictionary may be uncountable, however, the (gγn)n∈Z used in the representation

of a particular signal X consists of a countable subset.

In some cases, the function R is invertible and the signal x will be perfectly

reconstructed from its representation R(x). We then say that the representation is

exact and the original signal is reconstructed by the linear combination

x =
∑
n∈Z

αngγn

Nevertheless, when the representation is not exact, we make use of techniques

to approximate the reconstruction of x.

The dimension N of the signal space H is associated with the number of elements

of the dictionary that are needed to span the space. A good representation scheme

requires the use of a complete dictionary, i.e., any function in H can be expanded

by a combination of the waveforms (gλ)λ∈Γ. It is noteworthy, however, that the size

of the dictionary may be larger than N. In this case, we say that the dictionary is

redundant because there is more than one way to represent the same signal. It is

important to point out that, is some cases, we deal with in�nite dimensions.

The key point in signal decompositions is thus to obtain the sequence of dic-

tionary waveforms (gλn)n∈Z and their corresponding coe�cients (αn)n∈Z. There are

1A Hilbert space is an inner product space which, as a metric space, is complete, i.e., an abstract

vector space in which distances and angles can be measured and which is complete, meaning that

if a sequence of vectors approaches a limit, then that limit is guaranteed to be in the space as well.
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many methods that do so, exploiting signal properties, as mentioned earlier. We

will now distinguish between two representation models: basis and frames.

C.2.1 Basis

A basis [23] is a set of linearly independent elements (φλ)λ∈Γ that span the Hilbert

space H. By linear independence we mean that no function can be expressed as a

linear combination of the others - this implies that the set is minimal.

Orthogonal Basis

We de�ne an orthonormal basis as collection of functions {φλ;λ ∈ Γ} that are

complete in the sense that they span H and satisfy:∫ ∞

−∞
φi(t)φ̄j(t)dt = δ(i− j), ∀i, j ∈ Γ

where φ̄ = Re{φ} − jIm{φ} is de complex conjugate.

In this case, the representation is exact and the reconstruction is given by

x =
∑
λ∈Γ

〈x, φλ〉φλ

where the inner product 〈x, φλ〉 =
∫∞
−∞ x(t)φ̄λ(t)dt is interpreted as the projection

of the signal of interest in the base function φλ.

C.2.2 Frames

Frames [23] are a generalization of the concept of basis in a linear space. While a

set of vectors forms a basis in RM if they span RM and are linearly independent, a

set of N ≥M vectors form a frame if they span RM .

More formally, a frame is a family of vectors (φλ)λ∈Γ that characterizes any signal

x in a Hilbert space H from its inner product {〈x, φλ〉}λ∈Γ, where the index set Γ

might be �nite or in�nite.

Frame Theory, developed by Du�n and Schae�er, sets a condition for the frame

to de�ne a complete and stable signal representation:
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De�nition 2. The sequence (φλ)λ∈Γ is a frame of H if there exist two constants

A > 0 and B > 0 such that for any x ∈ H

A‖x‖2 ≤
∑
λ∈Γ

|〈x, φλ〉|2 ≤ B‖x‖2

When A = B the frame is said to be tight.

It is noteworthy that a frame representation may be redundant, and, considering

‖φλ‖ = 1,∀λ ∈ Γ, this redundancy can be measured by the frame bounds A and B.

The following example will be used to illustrate frame redundancy:

Example 1. Let (e1, e2) be an orthonormal basis of a two-dimensional plane H.

The three vectors:

φ1 = e1 , φ2 = −e1
2

+

√
3

2
e2 , φ3 = −e1

2
−
√

3

2
e2

have equal angles of 2π
3
between any two vectors. For any x ∈ H∑

n∈Γ

|〈x, φn〉|2

= |〈x, e1〉|2 + | − 1

2
〈x, e1〉+

√
3

2
〈x, e2〉|2 + | − 1

2
〈x, e1〉 −

√
3

2
〈x, e2〉|2

=
3

2
|〈x, e1〉+ 〈x, e2〉|2

=
3

2
‖x‖2

These three vectors thus de�ne a tight frame with A = B = 3
2
. The frame bound

3
2
gives the redundancy ratio, i.e., three vectors in a two-dimensional space.

C.3 Uniform Point Sampling

In this section we will introduce the simplest method for representing a function and

analyze some of its characteristics.

Point sampling discretizes a signal x(t) by taking a partition t1 < t2 < · · · < tN

of the domain interval I. The subsequent representation is given by the vector:

xn = (x(t1), x(t2), . . . , x(tN)) ∈ RN
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This way, the space of real functions de�ned on the interval I is represented by

the Euclidean space RN . Point sampling is called uniform if tn = nts, ∀n.

What remains to be investigated is if uniform point sampling is an exact repre-

sentation and how can the original function x be recovered from xn.

The Shannon theorem guarantees that a band-limited signal can be perfectly

reconstructed if the sampling rate is 1/(2ω0) seconds, where ω0 is the highest fre-

quency in the original signal. We will not demonstrate this theorem here, but we

will try to convince the reader with the following observations. Additional material

regarding this theorem can be found in [24].

It is intuitive that sampling a signal in the time domain is equivalent to multiply-

ing it by a Dirac comb. The Fourier transform of a Dirac comb is also a Dirac comb

and therefore, in the frequency domain, the band-limited spectrum of the signal is

being convolved by a Dirac comb, see Figure C.2.

Figure C.2: Sampling in time and the consequences in the frequency domain.

By observing these pictures it is easy to see that if the sampling rate ωs is greater

than 2ω0, then the signal in the frequency domain can be recovered by an ideal low

pass �lter, as shown in Figure C.3.

Since the Fourier transform of the Gate function is a sinc function, the recon-

struction of the signal in the time domain is no more than an interpolation of the

sampled vector by sinc functions.
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Figure C.3: Extracting the repeated spectrums.

On the other hand, if this limit of 2ω0 , called the Nyquist rate, is not respected,

then repeated spectrums will overlap and it will be impossible to recover the signal

by a low pass �ltering. This phenomenon is called aliasing, and is illustrated in

Figure C.4.

Figure C.4: Undersampling in time and the consequences in the frequency domain.

Notice that point sampling involves representing a signal as sequence of values

R(x) = (αn)n∈Z

where αn is the projection of he signal on a delayed Dirac

αn = 〈x, δ(t− nts)〉 =

∫ ∞

−∞
xδ(t− nts) = x(nts).

This representation is an invertible function, once the original signal can be

reconstructed by an interpolation of sinc functions. The exact reconstruction is

then given by

x =
∑
n∈Z

αnh(t− nts)

where h = sinc
(

t
ts

)
is a scaled sinc function.

This is a very interesting example, because the projection waveforms used for

representation are di�erent from the reconstruction waveforms (dictionary).
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C.3.1 Oversampling

If the sampling rate ωs is greater than 2ω0, we observe information redundancy, i.e.,

the number of samples is larger than it has to be to enable reconstruction of the

signals. This can be usefull for many applications because it minimizes noise errors

and allows the use of less complex anti-aliasing �lters.

In this case, however, the scaled sinc functions that can be used to reconstruct

this signal are not necessarily orthogonal. Note that

〈h(t), h(t− nts)〉 = 〈H(jω), H(jω)e−jωts〉

where H(jω) is a Gate function of badwidth 2/t0, t0 = 1/ω0, and ts = 1/ωs. There-

fore, if ts = t0/2, then 〈H(jω), H(jω)e−jωts〉 = 0 and the basis is orthogonal.

However, when we oversample, this does not occur. Actually, the set (h(t −

nts))n∈Z becomes complete and redundant. In terms of what has been just described,

this set is a frame.

C.3.2 Undersampling

In many applications, however, the signal of interest is not band limited or it is

necessary to sample in a rate smaller than the Nyquist limit. In this case, uniform

sampling will undoubtedly produce aliasing.

In signal processing this problem is usually solved by applying an anti-aliasing

�lter. Since the periodic spectrum will overlap, to minimize the distortion e�ect,

frequencies higher than ωs are eliminated before sampling starts. This is accom-

plished by a low-pass �lter known as the anti-aliasing �lter. Figure C.5 illustrates

this procedure.

Let us now analyze this problem using the concepts of representation and re-

construction. There are two problems with undersampling. The �rst is that high

frequency information is lost and the second is that the low frequencies are dis-

torted due to spectrum superpositions. Since the �rst problem cannot be solved

using uniform sampling at such a low rate, we will focus on avoiding the second.
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Figure C.5: Anti-aliasing �lter.

The idea is to smoothen the signal before sampling, i.e., to extract high frequen-

cies by applying a low-pass �lter. Filtering the high frequency information and then

projecting the result signal on a delayed Dirac function is equivalt to projecting the

original signal on a small pulse waveform v(t), as shown in Figure C.6.

It is interesting to point out that this kind of sampling is actually common and

easier to implement than the Dirac comb. A camera, for instance, when acquiring

an image, sets for each pixel an average of the surrounding values. This is not only a

good procedure because it minimizes distortion e�ects, but also because it is easier

to implement on hardware. Point sampling in a camera doesn't gather much light,

and therefore the signal to noise ratio will be inadequate. Moreover, sampling by

Diracs would require a very precise sensing mechanism, and usually electron beams

have Gaussian intensity functions.

Consider that v(t) is scaled sinc function. In this case, we are projecting the

signal on a basis of delayed sincs (vn)n∈Z, where

vn(t) = sinc
(
t− nts
ts

)
This is, in fact, an orthogonal basis and, therefore, we can reconstruct the signal by

x̂ =
∑
n∈Z

〈x, vn〉vn

If ts is such that the Nyquist limit is respected, then reconstruction is exact

(x̂ = x); however, if ts is large, then we are taking a signal of a Hilbert space and

projecting it in the subspace spanned by (en)n∈Z. Notice that this projection is
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Figure C.6: Undersampling.

taking a vector from a subspace of higher dimension and projecting it in a subspace

of lower dimension and, therefore, this is a form of compression.

C.4 Approximation Theory

Being able to represent signals using di�erent bases is usefull in signal processing

because it allows to approximate certain types of signals using just a few vectors.

In this section we will exploit in a more formal way what was just illustrated by

the undersampling problem.
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C.4.1 Approximation on a Linear Basis

Given a signal x and an orthogonal basis B = (φλ)λ∈Γ, an approximation projects x

over M basis vectors

xM =
∑
n∈IM

〈x, φn〉φn (C.1)

The choice of the M vectors can be done a priori or a posteriori (depending on

the signal x). In the �rst case, the approximation is called linear and, in the second,

non-linear.

Though linear approximations are simpler to implement, the distortion generated

will highly depend on the original signal, whereas in the non-liner case we can adapt

the projection vector to minimize the approximation error.

In this context, we can discuss DCT linear and non-linear compression studied

in Section B.6. The DCT involves projecting the signal into a basis that makes it

sparse and the run-length coding involves choosing from this new basis the most

signi�cant vectors. In this non-linear procedure, we need to save each coe�cient

value and its `position', which refers to the vectors of this new basis that are most

important to represent the signal. In linear compression, the signi�cant vectors are

known a priori, and we only need to store the coordinate values, which are the

projections of the signal on each base vector.

C.4.2 Approximation on Overcomplete Dictionaries

Linear expansion in a single basis is not always e�cient because the information

will be diluted across the whole basis. In overcomplete dictionaries [25], however,

we are able to express the same signal using a smaller number of coe�cients. Mallat

illustrated this idea [3] by comparing signal representations to language vocabularies.

While a small vocabulary may be su�cient to express any idea, it will sometimes

require the use of full sentences to replace unavailable words otherwise available in

large dictionaries.

Therefore, a good compression scheme involves �nding the best representation of
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an image using a redundant dictionary. It is noteworthy that a trade-o� considering

the dictionary's size must be analyzed because, while a big dictionary guarantees a

small number of values necessary to represent a given signal, it also demands a large

number of bits to determine each coe�cient.

Due to redundancy there are, however, innumerable ways to represent the same

signal. The intention of most of the developed techniques is to �nd a representation

which concentrates the energy in a small number of coe�cients.

What we are looking for is a sparse representation, i.e., a representation with a

larger number of zero coe�cients. We can reduce this problem to the one of �nding,

for a given N-dimensional signal x, a P -sized dictionary D = {g1, g2, . . . , gP}, and a

value M , M < N < P , the representation

xM =
M−1∑
m=0

αpmgpm (C.2)

that minimizes ‖x− xM‖.

This problem, however, is combinatorial and NP-hard. Thus, a series of pur-

suit methods were developed to reduce computational complexity by searching e�-

cient but non-optimal approximations. To illustrate how the latter perform, we will

overview two very popular algorithms.

Basis Pursuits

Basis pursuits [26] consists in solving the following convex optimization problem

with inequality constraints

min ‖α‖1, subject to
P−1∑
p=0

αpgp = x

where α is a vector of dimension P containing the αp coe�cients.

This is more a principle than an algorithm, and there are many computational

solutions to this problem, the most popular ones using linear programming.

The idea behind this technique is that the l1-norm enhances sparsity, as will be

discussed in Appendix D.
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Therefore a good approximation strategy results from extracting the M largest

coe�cients of the optimal P -sized α vector.

Matching Pursuits

Matching pursuit [3] is a greedy algorithm that decomposes a signal into a linear

expansion of waveforms that are selected from a redundant dictionary.

At each step, the dictionary element that best matches the signal structure is

chosen and the projection of the signal on it is stored. This process is repeated M

times using the residual which results from the subtraction.

The advantage of this technique is that it is less computationaly expensive than

Basis Pursuits and very powerful in terms of performance. It also shares many

interesting properties such as energy conservation and invertibility when M = P .

However, since it maximizes the projection at each step without considering the

overall signal structure, it is suboptimal.
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Appendix D

Compressive Sensing:

An Overview

Up until now we have been following the sample-then-compress framework, i.e.,

for a given image, we �nd a sparse representation and then encode the signi�cant

coe�cients. The shortcomings of this approach are that before a compressing scheme

can be applied, the encoder must:

• store a large number of samples;

• compute all the transform coe�cients; and

• �nd the locations of the large coe�cients.

This is what usually happens in popular image acquisition instruments. Common

digital cameras sample at a large number of mega-pixels, but store the images in

a compressed form, for example, the JPEG standard. This indicates that we only

need a small percentage of the measured coe�cients to reconstruct the signal and,

therefore, e�ciency is lost.

This suggests that a smarter and cheaper method could be used to improve

performance. In this context, Compressive Sensing appears. It involves sampling

the original signal in a rate smaller than the Nyquist limit and reconstructing it by

means of an optimization procedure.
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In this appendix we will study the principal concepts of this novel idea and how it

�rst came to existence. We will leave a greater formalization of the theory involved

for the next appendix.

D.1 Essential Aspects

What we want is to build an acquisition scheme that captures the image already

in its compressed form. Consider the DCT based compression scheme. If we knew

a priori which were the most signi�cant DCT coe�cients (consider, for instance, a

linear compression scheme), we could then simply measure their values without the

need of exploiting each pixel information.

Note that the word sample here has a new meaning. It refers no longer to

point samples, but rather to more general linear measurements of the signal. Each

measurement ym in the acquisition system is an inner product of the signal x against

a di�erent test function φm (for example, a row of the DCT transform matrix)

y1 = 〈x, φ1〉 , y2 = 〈x, φ2〉 , . . . , yM = 〈x, φM〉

where M is the number of measurements.

However, as we have seen in the previous appendixes, linear approximations

usually have performances that are far from optimal, illustrating that this a priori

knowledge is hard to obtain. Accordingly, though it is true that x is sparse in some

domain, we can not know exactly which are the signi�cant coe�cients. Moreover,

it is desirable to obtain a nonadaptive solution to the problem, so as to be able to

use the same mechanism to capture information from any signal.

D.1.1 The Algebraic Problem

Let s be the signal represented in a sparse domain, i.e,

s = Ψx

where x is the original signal and Ψ is a transformation that makes s sparse, for

example, the DCT.

64



To take a small number of measurements is to multiply x by a fat1 matrix ΦΩ

as shown in Figure D.1, where each row is a measurement function φm.

Figure D.1: The acquisition matrix. (Extracted from [4].)

y = ΦΩx

x = Ψ∗s⇐⇒ s = Ψx

y = ΘΩs, where ΘΩ = ΦΩ ·Ψ∗

The reconstruction problem involves �nding x so that y = ΦΩx, or, analogously,

s so that y = ΘΩs. This problem, however, is ill posed because there is an in�nite

number of possible solutions. All the same, not all solutions satisfy the sparsity

property of s and, therefore, a simple choice would consist of searching among all

possible solutions the one that makes s the sparsest.

D.1.2 Sparsity and the l1 norm

Sparsity can be described by the l0 norm

‖α‖l0
= ] {i : α(i) 6= 0}

Hence, the solution we want is

min
x
‖Ψx‖l0

subject to ΦΩx = y

1We use the term fat to refer to a matrix where the number of rows exceeds the number of

columns.
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Or, alternatively

min
s
‖s‖l0

subject to ΘΩs = y

Yet, this problem is combinatorial and NP-hard; however it can be proved that

sparse signals have small l1 norms relative to their energy. We will motivate the

relation between the l0 and the l1 norm by the 2-dimensional example in Figure D.2.

Figure D.2: Sparsity and the l1 norm.

Suppose we wish to �nd the signal s that has minimum l0 norm, given that s

respects a linear equation that constrains its position in R2 to the dotted line. Note

that if we minimize the l2 norm the optimal solution will be given by s = b, which

is not sparse and far from the l0 solutions α and β. However, the l1 minimization

would result in s = α, which is the exact solution we wanted.

The l1 norm is convex, which makes optimization problem computationally

tractable. Hence, all the following analyses and results will be given considering

l1 minimization.

D.1.3 The Recovery Algorithm

We can now understand the idea of Compressive Sensing in terms of its recovery

algorithm. This theory involves undersampling a signal and then recovering it by
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the convex optimization problem

min
s
‖s‖l1

subject to ΘΩs = y

Though we have understood why this is a good procedure, we still have to analyze

its e�ciency. How can we know for sure that the sparsest solution is the one that

reconstructs the original signal s? What do we need to assume about the sensing

matrix and the number of samples? What kind of results can we guarantee?

A series of theorems and de�nitions have been proposed to formalize this idea

and specify su�cient conditions that guarantee good results. These will be studied

with some care in the following appendix. We will, nevertheless, take some time to

introduce the �rst theorem proposed in this �eld. Though it is much weaker than

the ones that will be considered in the future, it sheds light to many interesting

ideas, as well as how the researchers �rst came up with CS.

D.2 The Fourier Sampling Theorem

D.2.1 The Magnetic Resonance Imaging Problem

The classical tomography problem consists in reconstructing a 2D image x from

samples of its Fourier transform x̂(ω) on the star shaped domain Ω illustrated by

Figure D.3.

Figure D.3: Sampling domain Ω in the frequency plane. (Extracted from [12].)

The most common algorithm, called �ltered backprojection, assumes the non-
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sampled Fourier coe�cients to be zero, in this way reconstructing the image with

minimal energy. An image reconstructed by this procedure is shown in Figure D.4

and illustrates how this mechanism has a bad performance.

(a) Original image. (b) Reconstruction with

�ltered backprojection.

(c) Reconstruction using

convex optimization.

Figure D.4: First CS experiment applied to the Logan-Shepp phantom test image.

(Extracted from [12].)

The solution proposed by [12] involves guessing the missing Fourier coe�cients

by means of a convex optimization based on the total-variation norm 2

min
y
‖y‖TV subject to ŷ(ω) = x̂(ω),∀ω ∈ Ω

This was implemented with some numerical constants and resulted in the exact

reconstruction of the original image. This surprising result led the researches to

formalize a new sampling theorem.

D.2.2 New Sampling Theorem

Theorem 1 (Fourier Sampling Theorem [12]). Assume that x ∈ RN is S-sparse

and that we are given M Fourier coe�cients with frequencies selected uniformly at

2The total-variation (TV) norm can be interpreted as the l1-norm of the (appropriately dis-

cretized) gradient.
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random3. Suppose that the number of measurements4 obeys

M ≥ C · S · logN

where C is a relatively small constant. Then minimizing

min
s
‖s‖l1

subject to ΘΩs = y

reconstructs x exactly with overwhelming probability.

This theorem di�ers from usual constraint speci�cations because it involves prob-

abilistic results. The reason for this rather unorthodox approach is that we cannot

obtain powerful results if we consider all measurable sets of size M , as there are

some special sparse signals that vanish nearly everywhere in the Fourier domain.

To illustrate this, consider the discrete Dirac comb in RN , where N is a perfect

square and the signal spikes are equally spaced by
√
N , as shown in Figure D.5.

Figure D.5: Comb �lter. (Extracted from [15].)

Let Ω be the set of all frequencies but the multiples of
√
N . Then the observed

signal in the Fourier domain is equal to zero and the reconstruction is identically zero.

Note that the problem here does not really have anything to do with l1 minimization

3In this case, we denote by Φ the N × N Fourier transform matrix and by ΦΩ the fat matrix

created by extracting N rows of Φ.
4It is common in literature to denote the set that supports the signal by T and the sampling

set by Ω. Therefore, S = |T | and M = |Ω|.
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once the signal cannot be reconstructed from its Fourier samples using any possible

method.

Another interesting point to analyze is whether it would be possible to recover

an arbitrary signal from less than CS logN samples using another algorithm. To

motivate that this solution is tight we will use the same example of the Dirac comb.

If x is as shown in Figure D.5, to be able to recover it from x̂, the observation set Ω

must contain at least on spike. Supposing that

|T | < |Ω| < N

2
⇐⇒

√
N < M <

N

2

and choosing Ω uniformly at random, the probability that no spike is chosen is given

by [12]

P =

(
N−

√
N

M

)(
N
M

) ≥
(

1− 2M

N

)√
N

Therefore, for the probability of unsuccessful recovery to be smaller that N−δ, it

must be true that
√
N · log

(
1− 2M

N

)
≤ −δ logN

Since M < N
2
, log

(
1− 2M

N

)
≈ −2M

N
and we obtain the solution

M ≥ Const · δ ·
√
N · logN

Hence, we conclude that the above theorem identi�es a fundamental limit, and

thus no recovery can be successfully achieved with signi�cantly fewer observations.

Figure D.6: Numerical example. (Extracted from [15].)
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A �nal illustration is given in Figure D.6, which shows how the recovery rate

decreases when the number of samples decreases in relation to the set that supports

the signal. To build this graph signals of size n = 1024 were used and |T | spikes

were randomly placed.

D.2.3 Relashionship with Nyquist Sampling Theorem

(a) Sparse signal in the time domain. (b) Fourier transform of (a) and CS

measurements (dots).

Figure D.7: CS intrepolation ploblem. (Extracted from [15].)

Consider the signal in Figure D.7(a). To follow the Nyquist sampling scheme,

we would have to consider the size of the signal band in the frequency domain

and sample it at twice that rate. In CS theory, on the other hand, we don't have

to consider the signal band at all. All that is relevant is the number of nonzero

coe�cients which, multiplied by a log factor, gives us the sensing rate.

When sampling in the Fourier domain, the measurements are as shown by the

red dots of Figure D.7(b), and reconstruction involves an interpolation procedure

that returns the blue curve. Notice, however, that this problem cannot be solved

by a simple interpolation formula, as is done in the Nyquist sampling theorem with

the sinc function. Instead, we reach the interpolated result by means of a convex

optimization procedure that minimizes the l1 norm of the sparse signal.

This problem was solved by [15] and the recovery is exact.
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D.3 Uncertainty Principles

Though CS may seem like a great breakthrough, the basic principles around it have

been known for quite some time. In fact, we can consider this novel idea as an

extension of the theory about uncertainty principles.

We have already mentioned in our study of the Wavelet transform in Section

B.2.3 that a function and its Fourier transform cannot both be highly concentrated.

We can extend this uncertainty principle to functions x that are not concentrated

in an interval. Instead, if x is practically zero outside a measurable set T and its

Fourier transform x̂ is practically zero outside a measurable set Ω, then

|T | · |Ω| ≥ 1− δ

where δ is an oscillation parameter related to the practically zero de�nition.

In the discrete case, if x ∈ RN has Nt nonzero components and x̂ is not zero at

Nω, the uncertainty principle states that

Nt ·Nω ≥ N

where the lower bound NtNω = N is reached in the case where x is a Dirac comb.

Note that this happens in the example shown in Figure D.5, where Nt =
√
N and

Nω =
√
N .

In most common studies, uncertainty principles are used to prove that certain

things are impossible, for example, obtaing good resolutions simultaneously in the

time and frequency domains. However, in this approach, we make use of this theorem

to allow recovery of signals despite amounts of missing information.

Donoho and Stark showed in [27] that it is possible to recover a bandlimited

signal when sampled with missing elements. Consider that the signal x, where

x̂ ∈ Ω, is observed in the time domain but a subset T c of the information is lost.

Then the observed signal r(t) is such that

r(t) =

x(t) + n(t), if t ∈ T

0, if t ∈ T c
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where n(t) is a noise signal.

It can be demonstrated that x can be recovered from r, provided that |T c||Ω| < 1.

Intuitively, consider the signal h, ĥ ∈ Ω, completely concentrated on T c. The

problem of reconstructing s from r derives from the fact that x and x+h cannot be

distinguished and therefore the reconstruction error can be arbitrary large. However,

such function h cannot exist because if it did the uncertainty principle would require

|T c||Ω| ≥ 1. Hence, a stable reconstruction to the above problem can be achieved.

D.4 Extensions

The practical relevance of Theorem 1 has two limitations. The �rst one is that it

restricts the sampling domain to Fourier and we are not always at liberty to choose

the types of measurements we use to acquire a signal. The second is that completely

unstructured measurement systems are computationally hard.

In view of these shortcomings, a signi�cant amount of e�ort has been given to

make CS theory useful for practical applications. Not only have researches expanded

this result, but they also described conditions that guarantee good performances in

adverse situations.
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Appendix E

Compressive Sensing:

Theoretical Aspects

In the previous appendix we introduced a sampling theory that allows compression.

We will now provide some key mathematical insights underlying this new argument.

Two di�erent approaches will be used:

• Basic CS - theory that stipulates constraints for the exact recovery of sparse

signals.

• Robust CS - expansion of the former approach to allow CS to be used in

applications where the signal is not exactly sparse or the measurements are

corrupted by noise.

This appendix also includes some important considerations for the design of

e�cient sensing matrices.

E.1 Basic CS

Basic CS deals with analyzing the constraints that guarantee perfect reconstruction

by means of an l1 optimization, considering that there exists a domain in which the

signal x is S-sparse and that the acquired measurements are not corrupted by noise.
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The �rst concept that needs to be extended from the discussed Fourier Sampling

Theorem is that the domain where x is sparse and the domain where the samples are

taken may vary in di�erent applications, not necessarily being time and frequency.

Therefore, it is of utmost importance to develop a way of determining if a sampling

domain is e�cient, given that the signal is sparse after it is multiplied by Ψ, where

Ψ is, for example, a wavelet transform. 1

E.1.1 Incoherence

Coherence [7] is a measurement of the correlation between the sensing waveforms

φk and the waveforms where the signal is supposed to be sparse ψk. Assuming both

have unit l2 norm, the de�nition is as follows.

De�nition 3 (Coherence between Ψ and Φ [5]).

µ(Φ,Ψ) =
√
N max

i,j
|〈φi, ψj〉| , ‖φi‖l2 ‖ψi‖l2 = 1

Note that µ(Φ,Ψ) measures the minimum angle between the sensing waveforms

1Notation review:

We use x to refer to an input signal and s to denote its S-sparse representation. T is the set

that supports s and is of size |T | = S and Ω is the random measurement subset of size |Ω| = M .

We denote by Φ the matrix that spans RN , where each row is a measurement function φm to be

applied to the signal x. Therefore, the sensing problem is

y = ΦΩx

where ΦΩ is a fat matrix created by randomly selecting M rows of Φ. Since x is sparse in the Ψ

domain, the sparse representation of x is given by

s = Ψx

And therefore, since Ψ is unitary (orthonormal transform),

y = ΦΩΨ∗s

⇒ y = ΘΩs, where ΘΩ = ΦΩΨ∗

We also denote Θ = ΦΨ∗ and ΘΩT is the submatrix created by extracting the columns of ΘΩ

corresponding to the indexes of T . Note that Θ is N ×N , ΘΩ is M ×N , and ΘΩT is M × S.
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and the sparsity waveforms. Therefore, if we look at the waveforms as vectors in RN ,

then high incoherencies mean that these vectors are far apart, i.e., nearly orthogonal.

From linear algebra we get

1 ≤ µ(Φ,Ψ) ≤
√
N

Demostration: The upper bound comes from the Cauchy-Schwarz inequality

|〈φi, ψj〉|2 ≤ ‖φi‖2 · ‖φj‖2 ⇒ µ(Φ,Ψ) ≤
√
N

and the lower bound can be derived if we consider that Ψ is an orthogonal basis∑
j

|〈φi, ψj〉|2 = 1 ⇒ max
j
|〈φi, ψj〉| ≥

1√
N

⇒ µ(Φ,Ψ) ≥ 1

�

Therefore, the time and the frequency domains are maximally incoherent, since

the Fourier basis ψk(t) = 1√
N
e

2πjk
N and the canonical basis φk(t) = δ(t − k) yield

µ = 1. This is very good because better results are achieved when coherence is

small, i.e., when both domains are poorly correlated.

We can perceive this observation if we notice that sampling in the sparse domain

directly returns many zero-valued coe�cients. The advantage of incoherence is that

if we measure a series of random combinations of the entries, we learn something

new about the sparse vector with every measurement.

We can also de�ne incoherence based on the matrix Θ.

De�nition 4 (Mutual Coherence [6]).

µ(Θ) =
√
N max

i,j
|Θi,j|

Notice that this is equivalent to De�nition 3

Θ =


φT

1

...

φT
N

[
ψ∗1 . . . ψ∗N

]
=


φT

1 ψ
∗
1 . . . φT

1 ψ
∗
N

...
. . .

...

φT
Nψ

∗
1 . . . φT

Nψ
∗
N
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And, since each row (or column) of Θ has necessarily an unitary l2-norm 2, µ will

take a value between 1 and
√
N .

In terms of the matrix Θ, µ can be interpreted as a rough measure of how

concentrated the rows of Θ are. From the above comment we notice that if there is

a coincident vector φi and ψj, the ith row of Θ will be maximally concentrated, i.e.,

Θi,j = 1 and Θi,k = 0,∀k 6= i. On the other hand, the best recovery possibility occurs

if φi is spread out in the Ψ domain, i.e., when the row is diluted: Θi,k = 1√
N
,∀k.

E.1.2 Result Theorem

Theorem 2 ([7]). Let Θ be an N × N orthogonal matrix and µ(Θ) be as de�ned

previously. Fix a subset T of the signal domain. Choose a subset Ω of the measure-

ment domain of size M , and a sign sequence z on T uniformly at random. Suppose

that

M ≥ C0 · |T | · µ2(Θ) · log (N)

for some �xed numerical constants C0. Then for every signal s supported on T with

signs matching z, the recovery from y = ΘΩs by solving

ŝ = min
s∗

‖s∗‖l1
subject to ΘΩs

∗ = y

Is exact (ŝ = s) with overwhelming probability.

Theorem 2 extends the previous Fourier Sampling Theorem with the exception

that the latter holds for each sign sequence. The need to randomize the signs comes

from an artifact that was used to demonstrate the thesis. It is highly probable that

it still holds without this constraint, however researchers have not been able to prove

this up until now [15].

We will not demonstrate this theorem here, but we will give two examples that

serve as insights to its tightness.

2The rows have unitary l2-norm if we consider Ψ orthonormal and the columns have unitary

l2-norm if we consider Φ orthonormal.
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To show this is a fundamental limit, consider Ψ the time and Φ the frequency

domain. Then, µ = 1 and the above theorem results in the Fourier Sampling

Theorem, which we have proven to be tight.

On the other hand, consider that Φ and Ψ are the same, i.e., µ2(Φ,Ψ) = N and

we want to recover a signal that is 1-sparse. The theorem says that we actually need

to measure every coe�cient to guarantee recovery. This is intuitive because since

each measurement informs only one of the ψk coe�cients, unless we measure the

nonzero coe�cient, the information will vanish. Therefore, to reconstruct x with

probability greater than 1− δ, we need to see all φk components.

The latter result is maintained without the need to assume Φ = Ψ, as long as

we consider both orthogonal. In fact, if there exists two coe�cients i and j, such

that |〈φi, ψj〉| = 1, then µ(Φ,Ψ) =
√
N and the number of measurements needed

to recover a 1-sparse signal x is N . To see this result intuitively, note that θi,j = 1,

θi,k = 0,∀k 6= j and θk,j = 0,∀k 6= j. Therefore, y = Θs can be rewritten as:

y =



∗ . . . ∗ 0 ∗ . . . ∗
...

. . .
...

...
...

. . .
...

∗ . . . ∗ 0 ∗ . . . ∗

0 . . . 0 1 0 . . . 0

∗ . . . ∗ 0 ∗ . . . ∗
...

. . .
...

...
...

. . .
...

∗ . . . ∗ 0 ∗ . . . ∗





0
...

0

∗

0
...

0


Notice that unless φj is chosen, i.e., unless j ∈ Ω we will not obtain any infor-

mation because ΘΩs = 0. Therefore, to guarantee recovery we must sample with

the hole matrix ΘΩ = Θ.

E.2 Restricted Isometries

In this section, we will de�ne strict conditions that when imposed in the matrix Θ

guarantee that CS is e�cient.
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E.2.1 An Uncertainty Principle

Below is an intermediate result that follows directly from incoherence.

Theorem 3 ([15]). Let Θ, T , and Ω be as in Theorem 2. Suppose that the number

of measurements M obeys

M ≥ ·|T | · µ2(Θ) ·max (C1log|T |, C2 log (3/δ)) ,

for some positive constants C1, C2. Then

P

(∥∥∥∥NMΘ∗
ΩT ΘΩT − I

∥∥∥∥ ≥ 1/2

)
≤ δ

The above equation means that all the eigenvalues of N
M

Θ∗
ΩT ΘΩT are between

1
2
and 3

2
. To see that this is an uncertainty principle, let s ∈ RN be a sequence

supported on T , and suppose that ‖N
M

Θ∗
ΩT ΘΩT − I‖ ≤ 1/2 (which is very likely the

case). It follows that

1

2
· M
N
· ‖s‖2

l2
≤ ‖ΘΩs‖2

l2
≤ 3

2
· M
N
· ‖s‖2

l2

This asserts that the portion of the energy of s that will be concentrated on the

set Ω is essentially proportional to M . Notice that ‖s‖2
l2

= ‖Θs‖2
l2
and, therefore,

we can rewrite the equation as

1

2
· M
N
· ‖s̄‖2

l2
≤ ‖s̄Ω‖2

l2
≤ 3

2
· M
N
· ‖s̄‖2

l2

where s̄ = Θs and s̄Ω is s̄ restricted to set Ω, s̄Ω = ΘΩs.

Hence, the relation says that the energy of the signal restricted of the set Ω is

much smaller than the energy of the signal. This is an uncertainty relation because

it means that if a signal is S-sparse (if the signal is concentrated on T ), then it

cannot be concentrated on the set Ω. If fact, this relation is quantized because there

is a �xed value M/N to which the concentration in each domain is proportional.

Though usually uncertainty principles are considered bad, this one actually

makes recovery possible. We can only take less measurements because the energy is

diluted in the Φ domain and, thus, by taking random measurements, we are able to

obtain a considerate amount of information about the signal.
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E.2.2 The Restricted Isometry Property

Based on the intermediate result presented in Section E.2.1, Candès and Tao de�ned

in [6] the restricted isometry property. A re�ned approach appears in [8].

De�nition 5 (Restricted Isometry Constant [8]). For each integer S = 1, 2, . . . , N

we de�ne the S-restricted isometry constant δS of a matrix ΘΩ as the smallest num-

ber such that

(1− δS)‖s‖2
l2
≤ ‖ΘΩT s‖2

l2
≤ (1 + δS)‖s‖2

l2

for all S-sparse vectors.

The restricted isometry is a property of the measurement matrix ΘΩ that refers

to the existence and boundary of δS. The RIP establishes a condition which, if

obeyed by ΘΩ, guarantees recovery of sparse vectors. Notice that the constant δS is

intrinsic to the structure of ΘΩ and, therefore, by setting constraints to its size, we

can quantify the e�ciency of the sensing matrix.

The reason we call this RIP is straightforward: the energy of the signal restricted

to the set Ω is proportional to the size of Ω. Nevertheless, some authors describe

this as an Uniform Uncertainty principle (UUP). The relation to the uncertainty

principles has already been established in Section E.2.1 and involves the guarantee

that the signal cannot be concentrated simultaneously on both sets. This condition,

however, is stronger than Theorem 3 because it is valid for every set T (every S-

sparse vector). Hence, it is called uniform.

We will now try to illustrate what this property means in terms of linear algebra.

By undersampling we get an ill posed problem and, from the in�nite number of

solutions, we are going to choose the one that makes s the sparsest. However, how

can we know for sure that this solution is unique? How can we force that there will

be no other solution that is as sparse as s or sparser? As mentioned earlier, we can

only guarantee this if we have incoherent measurements, i.e., if the sensing matrix

has some properties.

First of all, note that if ΘΩ has linear dependent columns, two di�erent sparse

vectors can result in the same measurement.
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Demostration:

ΘΩ · c =
N∑

j=1

cj · vj, where vj is a column of ΘΩ

Let c 6= 0 be a vector such that
∑N

j=1 cj · vj = 0 (this is always possible because the

columns are l.d.). Then, if we partition the set of indexes I = {1, 2, . . . , N} into two

disjoint sets I1 ∪ I2 = I, it results that

ΘΩ · c =
∑
j∈I1

cj · vj =
∑
j∈I2

−cj · vj

And we measure the vectors a and b de�ned as follows

a =

aj = cj, if j ∈ I1

aj = 0, if j ∈ I2
b =

bj = −cj, if j ∈ I2

bj = 0, if j ∈ I1

by ΘΩ, we obtain the same result y = ΘΩa = ΘΩb. �

Hence, we conclude that the existence of linear dependent columns lead to equiv-

alent measurements for two di�erent input signals and, therefore, recovery can only

be guaranteed if the columns are linear independent. However, we cannot impose

linear independence because the matrix is fat, i.e., the number of columns is larger

than the number of rows. Here again sparsity comes to the rescue. All we need is

that the columns of ΘΩ behave like an l.i. system for sparse linear combinations

involving no more than S vectors. That is exactly what the RIP gives us, it says

that for every T of size no bigger than S, ΘΩT is approximately orthogonal.

It can be easily shown that, if δ2S < 1 for S ≥ 1, for any T such that |T | ≤ S,

there is a unique s with ‖s‖l0 ≤ S and obeying y = ΘΩs.

Demostration: Suppose for contradiction that there are two S-sparse signals

s1 and s2 such that ΘΩs1 = ΘΩs2 = y. Then, let h be such that h = s1 − s2. It is

clear that h is 2S-sparse and that

ΘΩh = ΘΩ(s1 − s2) = ΘΩs1 −ΘΩs2 = 0.

The RIP states that

(1− δ2S)‖h‖2 ≤ ‖ΘΩTy‖2 = 0
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Since δ2S < 1, (1− δ2S) > 0 and, therefore we must have ‖h‖2 = 0 contradicting

the hypothesis that s1 and s2 were distinct. �

We should point out that these results are general in the sense that they are not

considering that the recovery algorithm is based on the l1 norm.

E.2.3 Result for Basic CS

Theorem 4 ([8, 9]). Let s be an S-sparse signal supported on T and measured by

ΘΩ. Assume that the restricted isometry constant for the matrix ΘΩT is such that

δ2S <
√

2− 1. Then the solution ŝ to

ŝ = min
s∗

‖s∗‖l1
subject to Θs∗ = y

is exact, i.e., ŝ = s.

This result is deterministic, not involving a non-zero probability of failure and is

also universal in the sense that all su�ciently sparse vectors are exactly reconstructed

from ΘΩs.

We can interpret this result as a slightly stronger condition that is related to the

l1 norm reconstruction strategy. In fact, it can be shown that for

• δ2S < 1 solution to the l0 norm is unique; and

• δ2S <
√

2− 1 solution to the l0 norm and the l1 are unique and the same.

E.3 Robust CS

Most signals are not usually sparse; they can be approximately sparse or have an

exponential decay. Moreover, measurements are not usually perfect and some level

of noise is added to them. For CS to be suitable for real application it must be

robust to these kinds of inaccuracies. Therefore, a lot of e�ort was made to set

conditions and theorems to expand the CS theory.

In this section, we will present theorems that make CS robust to applications

when:
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• the signal is not exactly sparse; or

• measurements are corrupted by noise.

E.3.1 Signals that are not Exactly Sparse

In general we cannot assume that images are sparse in a speci�c domain. However,

they are compressible in the sense that, after the DCT or Wavelet transform, the

coe�cient decay rapidly, typically like a power law.

In this case, if x if an image, s = Ψx is only approximately sparse, and, therefore,

we denote by sS the best S-sparse approximation of s, i.e., the result obtained when

we force the N − S smallest coe�cients of s to be zero.

The following theorem evaluates the performance of CS in this scenario.

Theorem 5 ([9]). Assume that s is approximately sparse and let sS be as de�ned

above. Then if δ2S <
√

2− 1, the solution ŝ to

ŝ = min
s∗

‖s∗‖l1
subject to ΘΩs

∗ = y

obeys

‖ŝ− s‖l1 ≤ C · ‖ŝ− sS‖l1

and

‖ŝ− s‖l2 ≤ C0s
−1/2 · ‖ŝ− sS‖l1

for reasonable values of the constant C0.

Roughly speaking, the theorem says that CS recovers the S largest entries of s.

Notice that, in the particular case when s is S-sparse, ‖ŝ− sS‖ = 0 and the recovery

is exact.

This result has the following desired properties:

• it is a deterministic statement and there is no probability of failure;

• it is universal in that it holds for all signals; and

• it holds for a wide range of values of S.
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Again, the demonstration of the above theorem does not lead us to the objective

of this section and, therefore, will not be presented here. For the interested reader,

we recommend [9, 28].

E.3.2 Signals that are Corrupted by Noise

Another very import and realistic scenario to consider is when the acquired data is

corrupted with noise, i.e.,

y = Φx+ n

where n is an unknown noise contribution bounded by a known amount ‖n‖l2 ≤ ε.

The property that will allow the method to be applicable is stability [28]: small

changes in the observations should result in small changes in recovery. Hence, consid-

ering the undersampling problem, the best result we can hope for is a reconstruction

error proportional to ε.

Demostration: [28] Consider the best possible condition in which we know a

priori the support T of sS. In this case, we can reconstruct ŝ by a Least-Squares

method, for example:

ŝ =

(Θ∗
ΩT ΘΩT )−1Θ∗

ΩTy on T

0 elsewhere

and suppose that no other method would exhibit a fundamentally better perfor-

mance. Therefore,

ŝ− sS = (Θ∗
ΩT ΘΩT )−1Θ∗

ΩTn

and if the eigenvalues of Θ∗
ΩT ΘΩT are well behaved, then

‖ŝ− sS‖l2 ≈ ‖ΘΩTn‖l2 ≈ ε.

�

Therefore, the result we are searching for is a bounding for Θ that guarantees

that the reconstructed ŝ obeys

‖ŝ− sS‖l2 ≤ C1ε (E.1)
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for a rather small constant C1.

This can be achieved by minimizing the l1 norm and considering the constraint

‖ΘΩs− y‖ ≤ ε

Theorem 6 ([9]). Assume that y = ΘΩs+n where ‖n‖l2 ≤ ε. Then if δ2S <
√

2−1,

the solution ŝ to

ŝ = min
s
‖s‖l1

subject to ‖ΘΩs− y‖l2 ≤ ε

obeys

‖ŝ− s‖l2 ≤ C0s
−1/2 · ‖ŝ− sS‖l1 + C1ε

for reasonable values of the constant C0 and C1.

It is noteworthy that the reconstruction error is a superposition of two factors:

the errors that yield from sparsity approximation and the error that results from

the additive noise.

For the reader interested in the proofs of Theorems 5 and 6 we recommend [6, 9].

E.4 Design of E�cient Sensing Matrices

It is, of course, of great importance to have matrices that preserve the RIP. Given

a sensing matrix Φ, the calculus of the associated restricted isometry constant is

NP hard and thus testing this property at each acquisition is unfeasible. We can,

however, determine some measurement ensembles where the RIP holds.

The actual problem is to design a fat sensing matrix ΘΩ, so that any subset

of columns of size S be approximately orthogonal. Here, randomness re-enters the

picture because setting a deterministic ΘΩ may be a very di�cult task (especially

considering large values of S ), but it can be easily shown [6] that trivial random

structures perform quite well.

Interestingly, the high dimensionality of the usually handled signals also gives a

positive contribution. It can be shown [29] that if N is large, a small set of randomly

selected vectors in RN will be approximately orthogonal.
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The following results obtained by [6, 28] provide several examples of matrices

that obey RIP.

Theorem 7 (Gaussian Matrices). Let the entries of ΘΩ be i.i.d., Gaussian with

mean zero and variance 1/N . Then the RIP holds with overwhelming probability if

S ≤ C ·N/ log(M/N)

for a relatively small constant C.

Theorem 8 (Random Projections). Let ΘΩ be a random Gaussian matrix whose

rows were orthonormalized. Then the RIP holds with overwhelming probability if

S ≤ C ·N/ log(M/N)

for a relatively small constant C.

A measurement using this matrix involves projecting the signal on an orthogonal

subspace which was chosen uniformly at random. Notice that the result of Theorem

7 is the same as Theorem 8 because, essentially, we have the same Gaussian matrix.

Theorem 9 (Binary Matrices). Let the entries of ΘΩ be independent taking values

±1/
√
N with equal probability. Then the RIP holds with overwhelming probability if

S ≤ C ·N/ log(M/N)

for a relatively small constant C.

This case is also very similar to Theorem 7. However, it measures the correlation

between the signal and random sign sequences instead of the correlation between

the signal and white noise.

Theorems 7, 8 and 9 can be extended to several other distributions, but we will

not present them here. Instead, we will focus on a much stronger result.

Theorem 10 (General Orthogonal Measurement Ensembles). Let Θ be an orthog-

onal matrix and ΘΩ be obtain by selecting M rows from Θ uniformly at random.

Then the RIP holds with overwhelming probability if

S ≤ C · 1

µ2
· N

(logM)6

for a relatively small constant C.
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Theorem 10 is very signi�cant because, as we have mentioned before, in many

applications the signal is not sparse in the time domain, but rather in a �xed or-

thonormal basis Ψ. Therefore, this theorem guaranties that if we can determine an

orthogonal matrix Φ such that µ(Φ,Ψ) is small3, then recovery is exact when the

measurements are taken with ΦΩ.

This result is not trivial and certainly not optimal, but researchers have been

unable to improve it up until now [15].

3This is equivalent to setting Θ = ΦΨ∗ and forcing µ(Θ) to be small.
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Appendix F

Results

In this appendix we will verify CS theory by means of examples.

Though the images are already stored in the computer as a matrix of pixels, we

will simulate acquisition by means of measurements that involve linear combinations

of these coe�cients.

The di�erent acquisition approaches will be evaluated in terms of their peak

signal to noise ratios (PSNR) for di�erent amounts of measurements, M .

The procedure was based on the results obtained by [10] and the optimization

algorithms used were downloaded from http://www.acm.caltech.edu/l1magic [11].

F.1 Images that are Sparse in the DCT Domain

To explore CS, we used three di�erent images of size N = 256 × 256 = 65536:

lena, camera man and text, which di�er in terms of energy distribution in the DCT

domain. From Figure F.1 we observe that while lena is smoother, the highest DCT

coe�cients appear on the upper left matrix corner. On the other hand, since text is

an image with abrupt intensity variations, its energy is spread along almost all the

DCT basis. Middling, camera man has an intermediate energy spread, displaying

strong intensities at some DCT diagonals which correspond to the sharp image lines.

To evaluate applications on image compression for Basic CS, it was necessary to

force sparsity in the DCT representation of the images. Therefore, for S = 3.5k, 6k,
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(a) lena test image
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(b) DCT transform of lena

(c) camera man test image
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(d) DCT transform of camera man

(e) text test image
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(f) DCT transform of text

Figure F.1: Test images and their DCT transform.
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10k, and 14k (where k = 103) we selected the N − S smallest DCT coe�cients of

each image and set them to zero. Figures F.2, F.3, and F.4 illustrate the distribution

in DCT domain of the non-zero values. 1
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Figure F.2: Visualization of sparsity pattern in test image lena.

F.1.1 Acquisition Strategies

We considered the following acquisition strategies2:

1. Linear DCT measurements followed by inverse transform recovery;

2. Random Noiselet measurements followed by l1 minimization recovery; and;
1Notation: we will continue to use the variables s and x to denote representations in the time

and DCT domain, respectively; and we will use x0 and s0 to refer to the former descriptions after

sparsity is forced.
2Let x0 be the image represented in terms of a vector of pixels of size 65536× 1 and s0 be the

vector that represents the 2D-DCT transform of the image. Since the sparse domain is the DCT,

in the current notation, Ψ is the 2D-DCT transform, but the measurement matrix ΦΩ is chosen in

di�erent fashions. We will denote ΦΩj the measurement matrix that is applied in strategy j and

x̂j and ŝj the recovered signals.

90



0 50 100 150 200 250

0

50

100

150

200

250

nz = 3500
0 50 100 150 200 250

0

50

100

150

200

250

nz = 6000

0 50 100 150 200 250

0

50

100

150

200

250

nz = 10000
0 50 100 150 200 250

0

50

100

150

200

250

nz = 14000

Figure F.3: Visualization of sparsity pattern in test image camera man.
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Figure F.4: Visualization of sparsity pattern in test image text.
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3. 1k linear DCT and M − 1k random Noiselet measurements followed by l1

minimization recovery.

In the �rst strategy, we implement a linear DCT compression scheme to which

we will compare CS results. Measurements are taken by obtaining the �rst M

DCT coe�cients (according to the diagonal zigzag scanning pattern described in

Section B.5.1). Therefore Φ1 is a fat matrix created by stacking the rows of Ψ that

correspond to the linear DCT measurements and recovery is done by setting to zero

the unknown values and then applying the inverse DCT transform.

The other two approaches are classic compressive sampling schemes. In the sec-

ond procedure, the sensing matrix ΦΩ2 is built by choosing at randomM waveforms

of an N ×N Noiselet transform Φ3. Therefore, measurements are taken as

y2 = ΦΩ2x0

and the following linear program is solved

ŝ2 = min
s
‖s‖l1

subject to y2 = ΦΩ2Ψ
∗s (F.1)

From ŝ2, we can reconstruct x̂2 as

x̂2 = Ψ∗ŝ2

The third method is analogous to the second one, only di�ering in terms of the

sensing matrix. This time, ΦΩ3 is constructed by staking the �rst thousand linear

3This transform is described in [30] and we used the MATLAB code downloaded from

http://users.ece.gatech.edu/vjustin/spmag to generate it [10]. This transform was chosen not

only because it is highly incoherent with the DCT and Wavelets but also because the matrix cre-

ated is orthogonal and self-adjoint, thus being easy to manipulate. Below one can see an illustration

of Φ for N = 4.

Φ =
1
2
·


1 −1 1 1

−1 1 1 1

1 1 −1 1

1 1 1 −1
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DCT coe�cients (i.e., the most important ones according to the zigzag scanning

pattern) and M − 1k Noiselet waveform (chosen at random from the same N × N

Noiselet transform used in strategy 2).

Computational Errors

Due to computational errors, we were unable to use the function that solves Equation

F.1 in the l1- Magic package. Instead, we solved the convex optimization problem,

also included in l1-Magic,

ŝ = min
s
‖s‖l1

subject to ‖y −ΘΩs‖l2 ≤ ε (F.2)

for ε = 10−3‖y‖l2 .

It is noteworthy that, by changing the parameter ε, di�erent results can be

obtained and, therefore, a further analysis of this problem should involve testing

recovery for varying values of ε. However, due to computational e�orts 4, it would

be impossible to do this in the present project without jeopardizing other interesting

analyses of CS theory. From a few tests, however, we were able to induce that, as

we minimize ε, the results improve in the sense that higher PSNRs are reached, but

the curve format stays the same5.

F.1.2 Results

Figures F.5, F.6 and F.7 show the results obtained for each image, respectively.

F.1.3 Analysis

The �rst meaningful characteristic that we observe is that compressive sampling

routines start to have good performances after a speci�c number of measurements

are taken. This threshold can be associated with the number of samples set by

4The necessary calculations executed for each of the 222 considered measurements involve ap-

proximately 2 hours of computational processing.
5This observation refers to the case where the signal is sparse and the measurements are uncor-

rupted by noise. Latter in this appendix, we will discuss how ε behaves in other scenarios.
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(a) 3.5k-sparse representation of lena.
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(b) 6k-sparse representation of lena.
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(c) 10k-sparse representation of lena.
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(d) 14k-sparse representation of lena.

Figure F.5: Results for applications of CS scheme in sparse versions of image lena.

In each graph is shown the PSNR (peak signal-to-noise ratio between the sparse

version of the image and the compressed reconstruction) versus the number of mea-

surements: (blue) linear DCT acquisition, (green) CS using only Noiselet measure-

ments, and (red) CS using Noiselet measurements and the �rst thousand linear DCT

coe�cients.
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(a) 3.5k-sparse representation of camera man.
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(b) 6k-sparse representation of camera man.
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(c) 10k-sparse representation of camera man.
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(d) 14k-sparse representation of camera man.

Figure F.6: Results for applications of CS scheme in sparse versions of image camera

man. In each graph is shown the PSNR (peak signal-to-noise ratio between the

sparse version of the image and the compressed reconstruction) versus the number

of measurements: (blue) linear DCT acquisition, (green) CS using only Noiselet

measurements, and (red) CS using Noiselet measurements and the �rst thousand

linear DCT coe�cients.
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(a) 3.5k-sparse representation of text.
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(b) 6k-sparse representation of text.
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(c) 10k-sparse representation of text.
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(d) 14k-sparse representation of text.

Figure F.7: Results for applications of CS scheme in sparse versions of image text.

In each graph is shown the PSNR (peak signal-to-noise ratio between the sparse

version of the image and the compressed reconstruction) versus the number of mea-

surements: (blue) linear DCT acquisition, (green) CS using only Noiselet measure-

ments, and (red) CS using Noiselet measurements and the �rst thousand linear DCT

coe�cients.
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Theorem 2. Notice that this borderline depends linearly on the sparsity of the

signal. Since we imposed the same level of sparsity for all three cases, it is not

surprising that the threshold does not di�er between the test images.

Linear DCT acquisition, however, is best in lena and worst in text. This was

already expected since lena has the best energy concentration along the DCT coef-

�cients.

We calculated the coherence by

µ(Θ) =
√
N max

i,j
|Θi,j|

and obtained µ(Θ2) = 2.82, while µ(Θ3) =
√
N = 256.

Therefore, although the threshold for strategies 1 and 2 are essentially the same,

µ(Θ3) is almost a hundred times larger than µ(Θ2). This may strike the reader

as a contradiction to the tightness of Theorem 2. Notice, however, that Θ3 is not

orthogonal and thus the theorem cannot be applied in this particular example.

It is also relevant to point out that before the boundary, strategy 3 performs

better than 2 and this tendency is not sustained when CS theory start to operate.

This result can be interpreted by the fact that when taking a small number of

samples the knowledge of the low frequency coe�cients adds more information to

the signal than random measurements. In fact, the best acquisition strategy in this

region is the linear DCT.

A last but very important comment is that, although it may seem that for M

higher than the threshold ΦΩ2 behaves better than ΦΩ3, this is not true. We should

consider that after the threshold the signal is perfectly reconstructed and what we

see are measurement errors. To illustrate this point, we plotted in Figure F.8 the

recovery of the 10k-sparse image lena for very small values of ε. Notice that the

oscillation for high values of M con�rm the hypothesis of additional computational

errors.

To further convince the reader, Figure F.9 shows the di�erence between the two

acquisition schemes for the 10k-sparse representation of lena. We took M = 45k

measurements and reconstructed the image using Equation F.2 with ε = 10−3‖y‖l2 .
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Figure F.8: Recovery of the 10k-sparse respresentation of lena with ε = 0.001 for

ΦΩ2 and ε = 0.1 for ΦΩ3.

F.2 Recovery Considering that the Image is not Ex-

actly Sparse

In this section, we repeat the acquisition schemes used in the previous one without

imposing sparsity to the test images. The same three strategies are reproduced and

the results are shown in Figure F.10.

In this case, we also used Equation F.2 instead of Equation F.1 and ε = 10−3‖y‖l2 .

A few tests were made varying ε but, di�erently from the sparse example, minimizing

ε lead to no signi�cant improvement. This phenomenon can be explained by the

distortion provoked by the absence of sparsity which overcomes the computational

errors, making the adjustment of ε ine�ective.

F.2.1 Analysis

From the results, we conclude that CS performs very poorly when we do not force

sparsity to the input image, in fact it is worse than the linear DCT compression

scheme, even considering large number of measurements. The explanation to this

disappointing outcome is that the images are not sparse in the DCT domain.

An inadvertent reader, by coming across Figures F.5, F.6, F.7, and F.10, could

easily conclude that, for the same M , we achieve better results if we force sparsity
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(a) measuring y = ΦΩ2x0 (b) measuring y = ΦΩ3x0.

Figure F.9: Test image lena reconstructed from M = 45k measurements.

before applying CS (contradicting Theorem 5 that states that if we need M mea-

surements to recover an S-sparse signal, then if the signal is not sparse, we would

recover the S largest coe�cients with this number of samples).

Notice, however, that to develop Figures F.5, F.6, and F.7 we calculated PSNR

by comparing the recovered data and the sparse representation of the original image.

Were we to compare results from Section F.1 with the original test images, we would

conclude that, save a relatively small error, the maximum PSNR in Figures F.5, F.6,

and F.7 is the same one obtained by taking the number of measurements set by the

threshold in those Figures and sensing the original image.

Figures F.11, F.12, and F.13 formalize this observation. From F.11(b), we can

make out that 20k measurements are needed to recover the 3.5k-sparse representa-

tion of lena and, therefore, Theorem 5 guaranties that 20k measurements recover

the 3.5k most signi�cant coe�cients of the original image. Notice that, compared

to the original image, the reconstruction of the 3.5k-sparse representation results in

PSNR = 28.8 and the reconstruction of the original image when 20k measurements

are taken results in PSNR = 26.6, as shown in F.11(b). The same analysis can be

made on the other �gures and Table F.1 compares the di�erent PSNR calculated

when we compare, to the original image, the results obtained when sparsity is or
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(a) CS for the image lena.
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(b) CS for the image camera man.
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(c) CS for the image text.

Figure F.10: Results for aplications of CS scheme in the original (only approximately

sparse) version of images lena, camera man, and text. In each graph is shown the

PSNR versus the number of measurements: (blue) linear DCT acquisition, (green)

CS using only noiselet measurements, and (red) CS using noiselet measurements

and the �rst thousand linear DCT coe�cients.

100



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

20

22

24

26

28

30

32

34

36

X: 3.5e+004
Y: 30.19

X: 2.5e+004
Y: 27.77

X: 2e+004
Y: 26.59

X: 4e+004
Y: 31.52

Number of Measurements

P
S

N
R

(a) Recovery of original image.
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(b) Recovery of 3.5k-sparse image.
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(c) Recovery of 6k-sparse image.
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(d) Recovery of 10k-sparse image.
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(e) Recovery of 14k-sparse image.

Figure F.11: Comparing CS acquisition when forcing or not sparsity to the input

image lena; in all images PSNR is calculated by comparing the reconstructed image

with the original test image.
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(a) Recovery of original image.
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(b) Recovery of 3.5k-sparse image.
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(c) Recovery of 6k-sparse image.
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(d) Recovery of 10k-sparse image.

1 2 3 4 5 6

x 10
4

20

22

24

26

28

30

32

Number of Measurements

P
S

N
R

(e) Recovery of 14k-sparse image.

Figure F.12: Comparing CS acquisition when forcing or not sparsity to the input

image camera man; in all images PSNR is calculated by comparing the reconstructed

image with the original test image.
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(a) Recovery of original image.
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(b) Recovery of 3.5k-sparse image.
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(c) Recovery of 6k-sparse image.
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(d) Recovery of 10k-sparse image.
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(e) Recovery of 14k-sparse image.

Figure F.13: Comparing CS acquisition when forcing or not sparsity to the input

image text ; in all images PSNR is calculated by comparing the reconstructed image

with the original test image.
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not forced before CS measurements are applied. The variations can be associated

with the constant C0 of Theorem 5.

Table F.1: Di�erent PSNR calculated when we compare, to the original image, the
results obtained when sparsity is or not forced before CS measurements are applied.

Test image lena
Measurements Sparsity is forced Sparsity is not forced
M = 20k PSNR = 28.8 PSNR = 26.6
M = 25k PSNR = 30.7 PSNR = 27.8
M = 35k PSNR = 33.0 PSNR = 30.2
M = 40k PSNR = 34.9 PSNR = 31.5

Test image camera man

Measurements Sparsity is forced Sparsity is not forced
M = 20k PSNR = 25.1 PSNR = 23.2
M = 25k PSNR = 26.9 PSNR = 24.2
M = 35k PSNR = 29.1 PSNR = 26.4
M = 40k PSNR = 30.9 PSNR = 27.8

Test image text
Measurements Sparsity is forced Sparsity is not forced
M = 20k PSNR = 24.8 PSNR = 23.1
M = 25k PSNR = 26.0 PSNR = 23.7
M = 35k PSNR = 27.6 PSNR = 25.3
M = 40k PSNR = 29.0 PSNR = 26.3

F.3 The Wavelet Domain

F.3.1 Signal that are Only Approximately Sparse

Since in the former section we observed that the DCT domain does not assure a

proper sparse representation of images, we intent to improve CS recovery by applying

a Wavelet transform. To generate the Wavelet basis, we used the MATLAB package

WAVELAB downloaded from http://www-stat.stanford.edu/∼wavelab/. We used an

orthornormal Wavelet basis to better relate to the Theorems stated in the previous

appendix and to simplify implementation. The Coi�et of 4 vanishing moments was

chosen because it performed quite well in the tested images.

The sparsity transform Ψ is, therefore, the Wavelet and the sensing matrix Φ is
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built by choosing at randomM waveforms of anN×N Noiselet transform (analogous

to the second strategy of Section F.1). The sampled signals are the original images

to which we can only guarantee sparsity approximation. Figure F.14 presents the

obtained results.

As expected, the result for reconstruction considering that the signal is sparse in

the Wavelet domain is much better than for the DCT. It is also interesting to point

out that for images text and camera man, which are less sparse in the DCT domain,

the gain in terms of signal to noise ratio is considerably higher.

F.3.2 Sparse Signals

Considering that substituting DCT for Wavelets resulted in much better perfor-

mances, we were motivated to analyze Wavelets in the conditions described in Sec-

tion F.1, i.e., for sparse signals.

Again Ψ is formed by Wavelets and Φ by Noiselets and the signals are forced to be

sparse by setting the smallest coe�cients (of the Wavelet domain) to zero. Figures

F.15, F.16 and F.17 show the results for each of the three considered images. We

plotted the Wavelets on top of the results obtained for the DCT to facilitate analysis.

We observe that, in this case, performance is practically the same for both DCT

and Wavelet bases. This happens because the signal is as sparse in both domains

and the incoherence is very similar: when Ψ is the DCT µ(Θ1) = 2.82, while when

Ψ is the DWT µ(Θ1) = 4.81.

F.4 Noisy Measurements

In this section, we consider that the acquired measurements are corrupted by an

independent white Gaussian noise. We consider the image of lena, modi�ed to be

10k-sparse in the Wavelet domain, and take Noiselet measurements. Therefore, we

get

y = ΦΩx0 + n

where n is a random variable with normal distribution and variance σ2.
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(a) CS for the image lena.
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(b) CS for the image camera man.
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(c) CS for the image text.

Figure F.14: Results for applications of CS scheme in the original (only approxi-

mately sparse) version of images lena, camera man, and text. To assist analysis, we

plotted the result for taking Noiselet measurements and assuming that the image is

sparse in the Wavelet domain (cian) on top of the results obtained for the DCT in

Figure F.10.
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(a) 3.5k-sparse representation of lena.
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(b) 6k-sparse representation of lena.
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(c) 10k-sparse representation of lena.
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(d) 14k-sparse representation of lena.

Figure F.15: Results for applications of CS scheme in sparse versions of image

lena. To assist analysis, we plotted the result for taking Noiselet measurements and

assuming that the image is sparse in the Wavelet domain (cian) on top of the results

obtained for the DCT in Figure F.5.
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(a) 3.5k-sparse representation of camera man.
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(b) 6k-sparse representation of camera man.
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(c) 10k-sparse representation of camera man.
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(d) 14k-sparse representation of camera man.

Figure F.16: Results for applications of CS scheme in sparse versions of image camera

man. To assist analysis, we plotted the result for taking Noiselet measurements and

assuming that the image is sparse in the Wavelet domain (cian) on top of the results

obtained for the DCT in Figure F.6.
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(a) 3.5k-sparse representation of text.
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(b) 6k-sparse representation of text.
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(c) 10k-sparse representation of text.
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(d) 14k-sparse representation of text.

Figure F.17: Results for applications of CS scheme in sparse versions of image

text. To assist analysis, we plotted the result for taking Noiselet measurements and

assuming that the image is sparse in the Wavelet domain (cian) on top of the results

obtained for the DCT in Figure F.7.
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Figure F.18 shows the result obtained for σ2 = 0, 0.1, 1, 2, 3, 4, 5, 10.

In this section, the choice of Equation F.2 is not only due to computational

errors, but the theory itself stipulates ε proportional to a bounding of the noise

contribution. Hence, given a �xed number of measurements M , there is an optimal

parameter ε under which the best solution is outside the convex set limitated by the

constraints and above which the solution is less exact 6.

The parameter ε was chosen according to a series of experiments and varies

according to σ2.

F.5 Quantization

In general, measurements cannot be taken with arbitrary large precision, and a

round-o� error is added to the acquired data. This quantization process is very

important to our study because we are interested in compressing the signal. As seen

in Appendix B, the size of the quantization step is extremely relevant to determine

the compression rate which, in turn, is used to evaluate compression e�ciency based

on the rate-distortion criteria.

Unlike the Gaussian noise, the quantization error is deterministic and signal-

dependent. Therefore, a great contribution to CS theory consists in verifying how it

performs in the presence of quantization errors and, then, plot the Rate × Distortion

function.

F.5.1 Quantization of Sparse Signals

We used a representation of lena, forced to be 10k-sparse in the Wavelet domain.

A uniform quantizer of varying step sizes was applied to the Noiselet measurements

and reconstruction was implemented based on Equation F.2.

Again, the parameter ε was chosen according to a series of experiments and varies

according to the quantization error. To illustrate the calculus of the optimal value for

6Note that this is only true for σ2 6= 0. When σ2 = 0 the smallest ε the better, the only reason

we are not allowed to make ε = 0 is due to computational errors
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Figure F.18: Results for applications of CS scheme to noisy versions of the 10k-sparse

representation of image lena. The strategy involves taking Noiselet measurements

and assuming that the image is sparse in the Wavelet domain.
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ε, which was repeated in the previous and the following sections, we present in Table

F.2 the variations of the PSNR according to parameter ε for di�erent quantization

steps and a �xed number of measurements, M = 45k. We marked the chosen ε for

each quantization step.

Notice that the optimal ε increases and diminishes proportionally to the quanti-

zation step (that re�ects the error size) and that there is an optimal value for each

step size, as explained in the previous section. From Table F.2, however, we observe

that both of these behaviors as not exact. This is also due to computational errors

that are visible since the PSNR variations are small.

For each �xed quantization step we varied the number of measurements and

plotted the Rate × PSNR curve, as shown in Figure F.19.

The rate was calculated, as follows

Rate =
M · Ey

2562

where Ey is the entropy of the measured data y.

To calculate Ey we built an histogram based on the minimum and maximum

values assumed by y (ymin, ymax) and the quantization step, qs. Hence, we obtain a

vector vy of size

N =
ymax − ymin

qs

where vy(n) indicates the number of coe�cients of y that range between {ymin+(n−

1)qs, ymin + nqs}. To disregard the cases when a quantized value does not occur, we

add 1 to every coe�cient of vy,

v′y(n) = vy(n) + 1,∀n ∈ {1, 2, . . . , N}

Hence, the probability of occurrence of each symbol is given by

py(n) =
v′y(n)∑N
i=1 v

′
y(i)

and Ey is calculated as in Equation B.2.

We observe a threshold, related to the transition point, where CS theory starts

to operate. As we increase the quantization step, the curve approaches the y axis
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but the threshold diminishes. This was expected because, by boosting quantization

e�ects we minimize rate but create higher distortions.

F.5.2 Quantization of Signals that are Only Approximately

Sparse.

To formally evaluate performance of CS, we have to consider the real case, where

quantization errors are added to images that are only approximately sparse.

Therefore, in this section we repeated the acquisition method used in the previous

one on the original version of lena. Figure F.20 shows the result.

We observe that, since the image is no longer sparse, the threshold for each quan-

tization step vanishes, which was already expected based on the previous results.

It is also noteworthy, that there is little e�ciency loss when sparsity is not forced.

This is because both errors (from lack of sparsity and noise addition) add up and,

hence, the former takes smaller importance. This observation also indicates that

the Wavelet transform is an appropriate representation of the image.

The rate × distortion curve for CS acquisition is the concave hull of the vari-

ous plotted functions and can be compared to the rate × distortion curve for the

JPEG2000 standard plotted in black.

We observe that, in terms of compression, CS is much less e�cient. However,

it has the advantage of taking fewer measurements and, therefore, can be more

appropriate for certain applications. Moreover, many of the used parameters can

still be improved. We can expect a better performance for other values of Φ and Ψ.

For a �nal illustration, we present in Figures F.21, F.22, and F.23 the recovered

image lena (not sparse) for random DCT measurements (Section F.2), Wavelet

measurements (Section F.3.1) and quantized Wavelet measurements (Section F.5.2).
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Table F.2: PSNR values (dB) for M = 45k and several values of ε and qs (quanti-
zation step).

qs = 0.01 qs = 0.1 qs = 0.2
ε = 0.001 87.85 ε = 0.001 76.78 ε = 0.001 71.73
ε = 0.005 87.84 ε = 0.005 76.78 ε = 0.005 71.69
ε = 0.010 87.83 ε = 0.01 76.78 ε = 0.010 71.67
ε = 0.050 86.60 ε = 0.050 76.78 ε = 0.050 71.62
ε = 0.100 86.48 ε = 0.100 76.78 ε = 0.100 71.79
ε = 0.500 84.21 ε = 0.500 76.07 ε = 0.500 71.45
ε = 1.000 83.14 ε = 1.000 76.78 ε = 1.000 71.19

qs = 0.5 qs = 1 qs = 2
ε = 0.001 63.88 ε = 0.001 57.84 ε = 0.010 51.82
ε = 0.005 63.88 ε = 0.005 57.84 ε = 0.050 51.82
ε = 0.010 63.87 ε = 0.010 57.84 ε = 0.100 51.83
ε = 0.050 63.87 ε = 0.050 57.84 ε = 0.500 51.84
ε = 0.100 63.87 ε = 0.100 57.85 ε = 1.000 51.83
ε = 1.000 63.83 ε = 1.000 57.84 ε = 5.000 51.81
ε = 5.000 63.42 ε = 5.000 57.73 ε = 10.00 51.69
ε = 10.000 62.81 ε = 10.00 57.42 ε = 20.00 51.49

qs = 3 qs = 4 qs = 5
ε = 0.001 48.25 ε = 0.001 45.75 ε = 0.001 43.77
ε = 0.005 48.25 ε = 0.010 45.75 ε = 0.010 43.77
ε = 0.010 48.25 ε = 0.050 45.75 ε = 0.050 43.77
ε = 0.050 48.25 ε = 0.100 45.75 ε = 0.100 43.77
ε = 0.100 48.25 ε = 0.500 45.76 ε = 0.500 43.77
ε = 0.500 48.27 ε = 1.000 45.76 ε = 1.000 43.77
ε = 1.000 48.26 ε = 5.000 45.75 ε = 5.000 43.77
ε = 5.000 48.24 ε = 10.00 45.72 ε = 10.00 43.75
ε = 10.00 48.18 ε = 50.00 45.42 ε = 50.00 43.55
ε = 20.00 48.08 ε = 100.0 44.89 ε = 100.0 43.17
ε = 50.00 47.67 ε = 200.0 43.47 ε = 200.0 42.13

qs = 10 qs = 50 qs = 100
ε = 0.100 37.78 ε = 1.000 24.77 ε = 500.0 19.76
ε = 0.500 37.79 ε = 10.00 24.79 ε = 800.0 20.02
ε = 1.000 37.79 ε = 50.00 24.87 ε = 1000 20.17
ε = 5.000 37.80 ε = 200.0 25.06 ε = 1500 19.83
ε = 10.00 37.80 ε = 500.0 25.34 ε = 2000 20.50
ε = 50.00 37.78 ε = 800.0 25.56 ε = 2500 20.37
ε = 100.0 37.72 ε = 1000 25.52 ε = 3000 20.07
ε = 250.0 37.19 ε = 2000 24.59 ε = 5000 17.93
ε = 500.0 35.90 ε = 5000 19.95
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Figure F.19: Results for applications of CS scheme to quantized versions of the

10k-sparse representation of image lena. The strategy involves taking Noiselet mea-

surements and assuming that the image is sparse in the Wavelet domain. Here we

plotted PSNR × Rate, where the rate is calculated based on the signal's entropy.
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Figure F.20: Results for applications of CS scheme to quantized versions of the orig-

inal (only approximately sparse) image lena. The strategy involves taking Noiselet

measurements and assuming that the image is sparse in the Wavelet domain. Here

we plotted PSNR × Rate, where the rate is calculated based on the signal's entropy.
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(a) M = 5k (b) M = 20k

(c) M = 35k (d) M = 50k

Figure F.21: Recovered image lena for acquisition based on Noiselet measurements

and considering that the signal is approximately sparse in the DCT domain.
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(a) M = 5k (b) M = 20k

(c) M = 35k (d) M = 50k

Figure F.22: Recovered image lena for acquisition based on Noiselet measurements

and considering that the signal is approximately sparse in the Wavelet domain.
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(a) M = 5k, rate = 0.36 (b) M = 20k, rate = 1.46

(c) M = 35k, rate = 3.09 (d) M = 50k, rate = 5.17

Figure F.23: Recovered image lena for acquisition based on Noiselet measurements

corrupted by quantization noise and considering that the signal is approximately

sparse in the Wavelet domain.

119



Appendix G

Conclusions

During the course of this work we introduced Compressive Sensing as a new paradigm

for image acquisition. Our study involved an overview of standard procedures for

sensing and compression in order to familiarize the reader and motivate applications.

We discussed the most important de�nitions and theorems that formalize CS

theory and stated some relevant arguments that justify its e�ciency. Finally, we

produced examples related to image compression and were able to evaluate perfor-

mance in a series of di�erent scenarios.

We observe that several adjustments must be made in order to allow CS to

be applicable in modern acquisition conditions, once the compression rate is sig-

ni�cantly smaller than standard compression schemes and the recovery strategy is

computationally more expensive.

However, it is noteworthy that this theory has a lot of potential, once it rises

against the common knowledge of the �led and, therefore, allows us to look at data

acquisition from a di�erent point of view. This suggests that applications in di�erent

circumstances can and should be experimented.

G.1 Future Work

In many recent publications [12, 13, 14], researchers have used the total-variation

norm instead of the l1-norm. In view of the relation between the TV-norm and the
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gradient of the l1 norm, there is a conjecture commonly found in the literature that

the theorems are still valid under this condition [15]. Applied to images, the TV-

norm minimization suggest a certain smoothness that is usually found in natural

and manmade pictures and is, therefore, very e�cient. An extention of this study

should, hence, consider this approach.

It would also be interesting to experiment alternatives to Noiselet measurements.

In the future, we intend to experiment acquisition with random Gaussian matrices

and Whash-Hadamard functions.

The choice of orthogonal Wavelets came from the structure of the recovery al-

gorithm, that needs as input the matrix Θ and its transpose. Though biorthogonal

Wavelets are more adequate to enhance sparsity, they do not lead to auto-adjoint

transform matrices, making the implementation rather di�cult. In the future, more

careful analysis of the l1-Magic toolbox will allow the use on non auto-adjoint ma-

trices.

It will also be interesting to verify how CS behaves when block partitioning is

adopted. We notice that the number of samples grows with a logN factor. Though

researchers claim that we can expect to recovery most signals 50% of the time if

M ≥ 4S [12], it would be interesting to consider very large images and compare

acquisitions schemes with and without block partitioning.

english
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