Quasi 4–8 Subdivision Surfaces

Luiz Velho
Jonas Gomes

Visgraf Laboratory
IMPA – Instituto de Matemática Pura e Aplicada
Rio de Janeiro, Brasil
Outline

- Subdivision Surfaces: *Motivation and Background*
- 4–8 Meshes: *Definition and Properties*
- Refinement Operators: *Principles and Methods*
- Quasi 4–8 Meshes: *Subdivision Scheme and Algorithm*
- Results: *Analysis and Examples*
A **Subdivision Surface**, \(p \), is the limit surface generated by a **Subdivision Scheme**, \(S \), applied to a **control polygon**, \(p^0 \).

\[
p = \lim_{n \to \infty} S^n p^0
\]

- **Generalization of Spline Surfaces**
Motivation

● Advantages

 – Control Meshes with Arbitrary Topology
 – Global Smoothness and Local Features
 – Continuous Models from Discrete Representations
 – Simple and Efficient Algorithms
 – Natural Multiresolution Structure

● Disadvantages

 – May not have Closed Form Expression
Subdivision Schemes

- **Refinement:**
 - *Changes Mesh Topology to increase density*

- **Smoothing:**
 - *Changes Mesh Geometry to increase regularity*

\[p^i \rightarrow \text{refinement} + \text{smoothing} \rightarrow p^{i+1} \]
Subdivision Operators

- Refinement Operator, R
 - Subdivision Template
 (\odot new vertex, \bullet old vertex)

- Smoothing Operator, F
 - Filter Mask (Stencil)
 $((c_i)_{i \in N(p)})$

 $p^{j+1} = \sum_{i \in N(p)} c_i p^j_i$

* Subdivision Operators depend on discrete vertex neighborhoods, $N(p)$
Mesh Structure

- Discrete Local Topology
 - 1-Neighborhood of a Vertex: $N_1(v)$
 - Valence (degree) of a vertex: $\text{deg}(v)$

- Classification
 - Regular Meshes
 (ordinary vertices)
 - Semi-regular Meshes
 (isolated extraordinary vertices)
Analysis of Subdivision Schemes

Order of Continuity, C^k, of the Limit Surface

- Convergence Properties: Study Invariant Neighborhoods

- Stationary Subdivision: Subdivision Matrix S
Quasi 4–8 Subdivision Surfaces

New Subdivision Scheme

- Based on Semi-regular 4-directional Meshes
- Generates Surfaces of class C^1
4–8 Meshes

- Regular 4–directional mesh
 - Generated by the set of vectors: \(\{e_1, e_2, e_1 + e_2, e_1 - e_2\} \)

* Regular vertices: valence 4 and 8

* Symmetry Properties: Leaves Tiling \([4.8^2]\)
Quasi 4–8 Meshes

- Semi-regular 4–direction Mesh

* Most Properties of 4–8 Meshes

* Generated by Refinement
Refinement of 4–8 Meshes

- Normal Refinement (quaternary)
 1. Split edges in 2
 2. Subdivide face in 4

- Interleaved Refinement (recursive binary)
 1. Split main edge
 2. Subdivide face in 2
 3. Refine subfaces
Quasi 4–8 Subdivision Scheme

- Overview
 1.a Find Maximal Independent Set of 2-Face Clusters
 1.b Perform Binary Subdivision on Faces

- Apply Smoothing Filter to Vertices

- Algorithm

\[
\text{quasi}_4\text{–}8\text{ subdivision } (K)
\]
\[
\text{quasi}_4\text{–}8\text{ refinement } (K)
\]
\[
\text{quasi}_4\text{–}8\text{ smoothing } (K)
\]
Refinement Operator

- Select Clusters based on Edge Length
 - Binary Subdivision Template
 - Internal Edge Bisection
Refinement Algorithm

quasi_4–8_refinement \((K)\)

sort_edges \((E)\)
store \(e \in E\) in priority queue \(Q\)

while \(Q \neq \emptyset\) do

get \(e\) from \(Q\)
if \(e\) not marked then
split \((e)\)
mark_cluster \((e)\)

for all \(f \in F\) do
subdiv \((f)\)
Smoothing Operator

- Smoothing Templates

New Vertices Ordinary Vertices Extraordinary Vertices
Smoothing Algorithm

quasi_4–8_smoothing \((K)\)

\[
\text{for } v'_i \in V' \text{ do}
\]

\[
p^{l+1}(v'_i) = \frac{1}{4} \sum_{v_j \in N_1(v'_i)} p^{l}(v_j)
\]

\[
\text{for } v_i \in V \text{ do}
\]

\[
p^{l+1}(v_i) = \frac{1}{2} p^{l}(v_i) + \frac{1}{2n} \sum_{v_j' \in N_1(v_i) \cap V'} p^{l+1}(v'_j)
\]

- Cascade Convolution

![Diagram of Cascade Convolution](image_url)
Convergence of the Scheme

- Quasi-Stationarity
 - Geometric reasoning based on planar case

- C^1 Continuity
 - Eigenanalysis of the Subdivision Matrix
 - Investigation of Characteristic Map
Planar Case

1. newly inserted vertices have valence 4.
2. old vertices of valence 4 change to valence 8.
3. old vertices of valence 8 do not change.
4. vertices of any other valence change little.
C^1 Continuity

- Invariant Neighborhood of Regular Vertex $v \in V_8$

- Subdivision Matrix S_8

 \[
 S_8 = \frac{1}{32} \begin{pmatrix}
 20 & 1 & 1 & 1 & 1 & 2 & 2 & 2 \\
 8 & 8 & 0 & 0 & 0 & 8 & 0 & 0 \\
 8 & 0 & 8 & 0 & 0 & 8 & 0 & 0 \\
 8 & 0 & 0 & 8 & 0 & 8 & 0 & 0 \\
 8 & 0 & 0 & 0 & 8 & 0 & 8 & 0 \\
 12 & 2 & 2 & 0 & 0 & 12 & 2 & 0 \\
 12 & 0 & 2 & 2 & 0 & 2 & 12 & 2 \\
 12 & 0 & 0 & 2 & 2 & 0 & 2 & 12 \\
 12 & 2 & 0 & 0 & 2 & 2 & 0 & 12
 \end{pmatrix},
 \quad
 \lambda_i = \{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64}, \frac{1}{128}\}

 1. $\lambda_0 = 1 > \lambda_1 \geq \lambda_2 > |\lambda_3|$;

 2. eigenvector corresponding to λ_0 is $(1, 1, 1, 1, 1, 1, 1, 1)$;
Subdivision of N-Regular Planar Polygons

- Intuition for Characteristic Map Induced by S_k
Subdivision of Warped Hexagon

- Adaptive Refinement
Examples

- Simple Shapes
 - Cube: genus 0 surface
 - Torus: genus 1 surface

- Feature Control
 - Boundary and Creases

- Complex Objects
 - Bunny
 - Cow
Cube
Torus
Cylinder

- Feature Control: Tagged Edges
Bunny
Cow
Conclusions

- New Subdivision Scheme
 - Well Coupled Operations
 - Adapted Meshes
 - Simple and Efficient

- New Concepts
 - Geometric-Sensitive Refinement
 - Quasi Stationary Subdivision