Mesh Simplification using Four-Face Clusters

Luiz Velho

Visgraf Laboratory
IMPA – Instituto de Matemática Pura e Aplicada
Rio de Janeiro, Brasil
Outline

- Simplification and Multiresolution
- Hierarchical 4-K Meshes
- Four-Face Cluster Simplification
- Examples
Mesh Simplification

- Basic Algorithm:

 while (requirements not satisfied) do
 (1) select candidate modifications
 (2) apply simplification operator

- Builds a Multiresolution

\[M^0 \xrightarrow{S_0} M^1 \xrightarrow{S_1} \ldots \xrightarrow{S_{n-1}} M_n \]

* Progressive Structure
Variable-Resolution Meshes

- Adaptation required in many applications
 - Example: *View-dependent Geometry*

- Need more powerful hierarchical structure: (DAG)
 - Dependency among simplification operations

Mesh is a cut in the graph
Simplification and Adapted Meshes

- Two-Step Approach:
 1. Generate Progressive Structure (Simplification)
 2. Build Vertex Tree (Dependency Analysis)

* Problem: *fold-over may occur if vertex neighborhood is not the same*

* Solution: *enforce original vertex neighborhood*

 - Easier when building Variable-Resolution structure during simplification
Four-Face Cluster Simplification

- Single-Step Approach
 - Integration of Simplification and DAG Construction

- Output is a Variable-Resolution Structure
 - 4-K Mesh

- Based on Classic Components
 - Half-Edge Collapse Variant
 - Quadric Error Metric
4-K Meshes

* Particular Case of Multi-Triangulation

- Simplest Type
- Good Properties: Expressive Power / Growth Rate / Height and Width

● Basic Operations

 – Degree-4 Vertex Removal / Insertion

 – Edge Swap
Simplification of 4-K Meshes using Edge Collapse

- Decomposition of a General Edge Collapse
 - Edge Collapse

- Edge Swap + Deg(4) Vertex Removal
Parallel Application of Simplification Operations

- Steps of the Method

 Repeat for N refinement levels:

 1. Rank vertices based on mesh quality criteria (quadric error metric)

 2. Select an independent set of clusters that covers most of the mesh

 3. Simplify clusters using edge swaps and deg(4) vertex removals

* Logarithmic Height
Step 1: Measuring Error with Quadrics

- Initialization of Vertex Quadrics: \(Q_v = \sum \alpha_f Q_f \)
 - Area-weighted sum of incident face quadrics

- Error at Vertex \(v \): \(E(v) = \alpha C(v) + \beta S(v) \)
 - Cost of Half-Edge Collapse with \(u \) fixed
 \[C(v) = \min_{u \in N_1(v)} (Q_v + Q_u)(u) \]
 - Cost to make \(\text{deg}(v) = 4 \)
 \[S(v) = \sum_{(s,t) \in I} Q_s(t) \]

\(Q_s(t) \) is the volume squared of the tetrahedron defined by \((u, v, s, t)\)

* (Take into account triangle aspect ratio and mesh fold-over)
Step 2: Selecting Clusters

- Independent Set Computation:
 - Cluster Marking

* OBS: Mark Four-Face Clusters after Edge-Swaps
Step 3: Simplify Clusters and Update

- Simplification of Cluster associated with Vertex v
 - Perform Sequence Edge Swaps such that $\deg(v) = 4$
 - Remove vertex v (e.g. Half-Edge Collapse (u, v))

- Update Error
 - Add Quadric of v to endpoints of new edge (u, w)
 $$Q_i = (Q_v + \delta_i Q_i), \quad i = u, w, \quad \text{where} \quad \delta_i = 1 - \frac{C_i}{C_u + C_w}$$
 - Recompute Costs of Neighbors $p \in N_1(u) \cup N_1(w)$
Algorithm

Simplify 4k(M, n)
 assign quadrics;
 for all (v ∈ M) do
 compute $E(v)$
 put v into queue
 for (j = 1 to n) do
 while (queue not empty) do
 get v from queue
 if (v not marked) then
 perform edge swaps in $N_1(v)$
 remove vertex (v)
 recomputes quadrics Q_u and Q_w
 update queue for $p ∈ N_1(u) ∪ N_1(w)$
Examples

- Simplification Sequence
 - Planar Triangulation
 - Height Surface
 - Cow
 - Bunny

- Adapted Meshes
 - Bunny
Planar triangulation

- Simplified meshes with 186, 132, 69, 35, 19, 6 triangles
Heigh surface

- Simplified meshes with 2432, 1594, 1103, 749, 500, 338 triangles
Cow model

Simplified meshes with 5800, 1200, 700, 400, 300, 200 triangles
Stanford Bunny

Simplified meshes with 10000, 4577, 2106, 988, 463, 245 triangles
Adapted meshes

Curvature

Region Selection
Final Remarks

● Conclusions
 – Single-Step Simplification and Hierarchy Construction
 – Simple Algorithm Based on Classic Components
 * Same Principles can be used for Sequential Simplification

● Future Work
 – Out-of Core Extension
 – Feature Detection: Tagged Meshes