Chapter 2

Objects and Graphics Devices

In this chapter, we will give a general conceptualization for graphics objects and we
will show how they relate to graphics devices. From these concepts, we will present the
two-dimensional graphics library that will be used in the implementation of interactive
progamas discussed in the book.

2.1 Graphics Objects

To study the computer graphics processes, ideally, we would like to have an inclusive
conceptualization to allow an understanding of the area as a whole. This conceptual-
ization should be based on a mathematical model including the relevant objects in the
area, such as geometric models and images.

In this sense, we will formulate the concept of graphics object that will be the starting
point for constructing our analysis. Therefore, we establish computer graphics as the
area where graphics objects are studied. The processes in the area thus correspond
to operations with graphics objects of a certain type, as well as conversions between
different types of graphics objects.

A graphics object, O = (S, f), consists of a subset S C R™, and a function f: S —
R™. S is called geometric support of O, and it determines the geometry and the topology
of the graphics object. Function f specifies the properties of O at each point p € S,
and it is called attribute function of the object (see Figure 2.1).

The dimension of the object O is given by the dimension of its geometric support
S. The several attributes of O correspond to [-dimensional sub-spaces in the Euclidean
space R™. For more information on graphics objects, we refer the reader to (7).

This definition is sufficiently general to include all of the relevant objects for com-
puter graphics, such as points, curves, surfaces, solids, images and volumes.

A family of graphics objects of great importance is constituted by the “planar graph-
ics objects”, for which m = 2, that is, the geometric support is contained on the Eu-

10 CHAPTER 2. OBJECTS AND GRAPHICS DEVICES

O~

Figure 2.1 Generic Graphics Object.

clidean plane R?. Its relevance is due to the fact that the class of objects can be mapped
directly into the usual graphics devices. These objects have dimension Dim(S) < 2, and
they correspond to points, curves and planar regions (we exclude the set of fractals).
Two important examples of planar graphics objects are curves and polygonal regions.
In general, these objects are used to represent, in an approximate way, curves and
arbitrary regions on the plane. Another important example of graphics object is a
digital image. For more details on these graphics objects, the reader should consult (7).

2.1.1 Description of Graphics Objects

Two general forms exist to mathematically describe the geometric support of a graphics
object: the parametric and the implicit forms.

In the parametric description, the set of points p € S is directly specified by a
function g : R¥ — R™, where k = Dim(95)

S={(z1,...,zm) | (z1,.--,2m) =9g(u1,...,ug)}

In the implicit description, the points of S are indirectly determined by a function
h:R™ — Rk

S=hn"tc)={(x1,..szm) | h(x1,...,2m)=c}

Exemplo 2.1 (Circle). To compare these two descriptions, we will use as example the
unit circle (see Figure 2.2):

e Parametric Description:
(x,y) = (sin(u), cos(u)), where u € [0, 27].

e Implicit Description:
h=Y(1), with h(x,y) = 22 +y* = 1.

Notice the above descriptions constitute a continuous mathematical model of the
geometry of a graphics object. Therefore, we have to obtain a finite representation of
these models to work with them in the computer, which is a discreet machine.

2.1. GRAPHICS OBJECTS 11

—_
—_—
—_

an
N

Figure 2.2 Parametric and Implicit Descriptions of a Circle.

2.1.2 Discretization and Reconstruction of Graphics Objects

The passage from a continuous to a discreet object is called discretization or repre-
sentation of the object. The inverse process, of recovering the continuous model from
its discreet representation is called reconstruction. The reconstruction can be exact or
approximate, depending completely on the characteristics of the process as a whole.

For this end, a simple form, quite used in practice, consists on the discretization
by point sampling and the reconstruction by linear interpolation, as represented in
Figure 2.3.

Figure 2.3 Sampling and Reconstruction.

Consider a continuous function f : R — R. The representation by uniform point
sampling is given by the sequence of samples (y;);ez, where y; = f(z;) corresponds to
the value of f at the sampled points x; = = +iAz. The reconstruction is obtained from
the samples (y;), by linear interpolation f(x) = ty; + (1 — t)y;+1, where t = x mod Ax
e i = |x/Ax]. Notice in this case, the representation only provides an approximate
reconstruction, that is, f ~ f (see Figure 2.3).

Exemplo 2.2 (Representation of Implicit and Parametric Objects). To construct a

12 CHAPTER 2. OBJECTS AND GRAPHICS DEVICES

discreet representation of a circle, starting from its parametric description, we dis-
cretize the parameter u € [0,27], making u; = i/27, i = 0,...,N — 1, and evaluate
(zi,y;) = g(u;), obtaining the coordinates of these N points on the circle. The circle
representation is therefore given by this list of points. (see Figure 2.1.2)

To construct a discreet representation of a unit disk, starting from its implicit de-
scription, we discretize the environment space R? and evaluate the implicit function
f(xs,y;) from a given a regular grid N x M. The representation will be given by the ma-
trix A of dimensions N x M. If f(x;,y;) < 1, we then make a;; = 1, otherwise a;; = 0.
This representation corresponds to a discretization of the characteristic function of the
disk (see Figure 2.1.2).

(a) (b)

Figure 2.4 Formats of vector (a) and raster (matrix) (b) data.

2.2 Graphic Devices and Representation

A graphics device has a representation space in which we should map the object to be
manipulated by the device. This way, to visualize a certain graphics object O = (U, f),
we should obtain a representation of the object so that the discretized object can be
mapped in the representation space of the device. Once mapped in this space, the
device performs the reconstruction of the object, allowing its visualization.

2.2.1 Vector Devices

In vector devices, the representation space consists of points and straight line segments.
More precisely, the representation space is a subset of the plane where we can assign
coordinates to points; besides, given two points A and B, the device performs the
reconstruction of the segment AB. These devices can be used to visualize polygonal
curves and surfaces or polyhedral regions. In this case, we only draw the polygon edges
of the representation, as shown in Figure 2.5(a).

2.2. GRAPHIC DEVICES AND REPRESENTATION 13

2.2.2 Raster (Matrix) Devices

The representation space of these devices allow to visualize a m x n matrix, in which
each point has a color attribute. Therefore, to visualize a graphics object in these
devices, we should obtain a matrix representation of the object. For more details on
raster representation of planar graphics objects, we refer the reader to (7). Raster
devices are appropriate for visualizing digital images (see Figure 2.5(b)).

Figure 2.5 Visualization on a vector (a) and raster (matrix) (b) device.

Exemplo 2.3 (Rendering a Circle). We should have the appropriate representation to
visualize (render) a graphics object in either a vector or raster device. For example,
the visualization of a circle can be performed by representing the circle by a polygonal
curve (see Figure 2.6(a)). To visualize the circle in a raster device, it must be rasterized
(i.e. scan converted) to obtain its matrix representation (see Figure 2.6(b)). Notice the
polygonal approximation of a circle can be displayed in a raster device; for this, the
straight line segments constituting the sides of the polygon must be rasterized.

[T
(a) (b)

Figure 2.6 Vector (a) and raster (matrix) (b) representations.

Some graphics objects are difficult, or even impossible, to be appropriately visu-
alized in vector devices. The visualization of a polygonal region can be obtained by

14 CHAPTER 2. OBJECTS AND GRAPHICS DEVICES

placing hatching marks in the reconstruction, while in a raster device its visualization
is immediate. The visualization of a digital image is very difficult in vector devices. In
this way, in general, we use the vector format to represent geometric models and the
raster (matrix) format to represent digital images.

Despite that, both geometric models and digital images can be represented in any
of these two formats. In fact, the concept of graphics object allows a unified treatment
of these two elements. On one side, we can consider an image as a Monk’s surface,
and use Differential Geometry techniques in its processing. On the other hand, we can
consider the coordinates (z,y, z) in the parametric space (u,v) of a surface as values of
an image, and in this way use image processing techniques for modeling purposes (see
Figure 2.7).

(a) (b)

Figure 2.7 An image as a model (a) and a model as an image (b)

2.3 Classification of Graphics Devices

The user-computer interaction with graphics objects happens through graphics devices.

2.3.1 Conceptualization

To obtain a classification of graphics devices, we should use abstraction levels. This
approach, known as paradigm of the 4 universes, implicates on studying a problem
in the context of the following four universes: physical, mathematical models, their
representations and implementations. This way, graphics devices can be analyzed ac-
cording to their use, functionality, graphics format and implementation structure (see
Figure 2.8).

Usage Mode

The usage mode relates to the application to which the graphics device is aimed at
being used. According to this criterion, graphics devices can be interactive and non-
interactive.

2.3. CLASSIFICATION OF GRAPHICS DEVICES 15

Uso Aplicacdo
|
Funcéao Modelo do Dispositivo
|
Fo rTato Tipos de Dados
Estrutura Tecnologia

Figure 2.8 Abstraction levels of graphics devices.

Functional Characteristic

The functional characteristic relates to the role of the device in the computational
model. According to this criterion, graphics devices can be for: input, processing, and
output.

Data Format

Devices can be classified as vector and raster (matriz), according to the geometric
nature of their representation space.

Implementation Structure

The tmplementation structure is determined by the technology used in the construction
of the graphics device. This structure also depends on the usage, functionality and
format modes of the device. An example of different implementation structures for
a device with the same function can be given by the calligraphic and matrix display
devices; both non-interactive graphics output devices, however, the former adopts the
vector format while the latter adopts the raster format.

2.3.2 Classification

By using the above conceptualization, we can classify graphics devices according to
their functionality, and for each type, according to the graphics data format. In this
way, we have the graphics devices for input, processing and output, in the vector and
raster (matrix) formats.

Examples of vector input devices include: mouse, Trackball and Joystick, operating
with relative coordinates; and tablet, touch screen, and data glove, operating with

16 CHAPTER 2. OBJECTS AND GRAPHICS DEVICES

absolute coordinates. Notice that all of them are two-dimensional, except the date
glove, which has six degrees of freedom. Examples of raster input devices include: the
frame grabber, scanners, and range devices.

Examples of vector graphics processing devices are the graphics pipelines, such as
the Geometry Subsystem of SGI. Examples of raster graphics processing devices are
the parallel machines from Pixar and the Pixel Machine.

Examples of vector graphics output devices are: plotter and vector displays. Ex-
amples raster graphics output devices are: laser or inkjet printers, and monitors of the
type CRT or LCD.

Vector graphics output devices were very common in the 60’s and 70’s. Raster
devices start being more used in the 80’s. Nowadays, a good combination consists on
using input vector graphics devices (mouse and tablet for instance) and raster output
devices (CRT or LCD monitors and laser printers or inkjet).

2.4 Graphics Workstations

Above we saw examples of individual graphics devices. In practice, graphics devices are
used in conjunction. Mainly for interactive applications, we combine input, processing
and output graphics devices into a complete graphics system.

Interactive graphics workstations are the most common class of graphics system. In
fact, most current computers can be considered a graphics system.

In this book, we will assume that the graphics implementation is aimed towards a
standard graphics system, formed by raster output device, a vector input device and
a general purpose processor. (see Figure 2.9). Vector graphics input descriptions are
converted to raster descriptions by the windowing system of the graphics workstation.

Df\/

— —
— —

Figure 2.9 Interactive Graphics Workstation.

2.4.1 Windowing System

A modern interactive graphics workstation is controlled by a graphics sub-system known
as a “Windowing System”. This sub-system is usually incorporated into the operational

2.4. GRAPHICS WORKSTATIONS 17

system of the machine and it controls the graphics input, processing and output func-
tions. Windowing systems are based in the paradigm of the “desktop”, in other words,
they implement the view of a work table with multiple documents. In this type of
system, each window corresponds to a separate computational process. Examples of
windowing systems are: X-Windows for UNIX platforms, MS-Windows for PC plat-
form, and the Desktop for Macintosh platforms.

2.4.2 Viewing Transformations

To visualize a planar graphics object, we define a window in the coordinate system of
the object (“world coordinate system”, WC). This window should be mapped into a
viewport in the display space of the device. To increase the degree of device indepen-
dence, a system of normalized coordinates is used (“normalized device coordinates”,
NDC). This system is defined in the rectangle [0,1] x [0, 1] (see Figure 2.10).

| |

Figure 2.10 Viewing Transformations.

In this case, the viewport is defined in normalized coordinates, and it is in this
viewport that we should map the window defined in the object space. The transfor-
mation mapping the points of the window into points of the viewport in normalized
coordinates is called 2D viewing transformations. If the window is defined by the coor-
dinates (xmin,ymin) and (xmax,ymax) and the viewport is defined by (umin, vmin)
and (umazx,vmaz), the viewing transformation is given by

Umaxr — umin

u=———#——(x — zmin) + umin (2.1)
Tmaxr — rmin
vMmax — vmin

v=——0—— (y — ymin) + vmin. (2.2)
ymax — ymin

For the final stage of the viewing process, the viewport (in normalized coordinates)
is mapped into the graphics device.

18 CHAPTER 2. OBJECTS AND GRAPHICS DEVICES

The transformations between the window (in space coordinates), the viewport (in
normalized coordinates) and the graphics device are obtained by a simple change of
scaling in the coordinates, which alters the window dimensions (see (7)).

2.5 The GP Graphics Package

One key problem related to the implementation of interactive graphics programs is the
portability. Ideally, graphics programs would indistinctively work in any platform. At
least, it would be desirable that the same code could be used for graphics devices of
each basic type.

The solution to this problem is in the concept of device independence, which impli-
cates on creating a programming layer to isolate implementation differences from the
several devices. This layer is the graphics package. As in our conceptual schema of the
4 universes, we can therefore have a common representation for different implementa-
tions.

2.5.1 GP Characteristics

In this book, we will adopt the GP (Graphics Package), originally developed by Luiz
Henrique Figueiredo.

GP uses a representation space only allowing vector specifications. Starting from
the vector specifications, GP performs the appropriate conversion to reconstruct the
graphics object in the device being used. Due to this fact, we say that GP uses a vector
metaphor to manipulate the graphics objects in both the input and output.

In general, GP assumes the existence of a graphics workstation composed of a two-
dimensional raster output device and a vector input device (besides the keyboard). The
graphics sub-system of the workstation should be based on the paradigm of windows.

GP was chosen by matching and fitting quite well with the proposal of the book.
More specifically, this package has the following characteristics:

e Minimality: GP implements an API (Application Programmer Interface) which
is minimal but enough for simple graphics programs.

e Portability: GP is an device independent package, based on the paradigm of
windows.

e Separability: the architecture of GP isolates the implementation details of the
graphics API.

e Availability : the package supports most of the existing platforms.

To accomplish these objectives, the architecture of GP was divided in two separate
layers: gp and dv.

2.5. THE GP GRAPHICS PACKAGE 19

The gp layer is responsible for the two-dimensional viewing transformations. The
routines at this level are device independent and they have the purpose of mapping
application coordinates into device coordinates.

The dv layer is responsible for controlling the graphics devices. The routines of this
layer are called by the routines of the gp layer. The routines at this level perform
the conversion from vector description to a raster (matrix) representation of the device
(rasterization). In other words, this layer implements the vector metaphor in the which
GP is based. The dv should be implemented for each platform supported by GP. The
implementation of this layer will not be discussed in the book.

The current implementation of the dv layer uses OpenGL for 2D vector graphics
output and SDL for window creation and event handling. The option for this solution
is due to the fact that OpenGL and SDL are two mature standards that are platform
independent and fit well with the API modelo of GP. OpenGL uses the same 2D viewing
paradigm of GP and it is supported in hardware in most modern workstations. SDL
(Simple DirectMedia Layer) is a cross-platform multimedia library designed to provide
low level access to keyboard, mouse, 3D hardware via OpenGL. It is very popular in
the game community and it has an event model very similar to GP.

2.5.2 Attributing Color in GP

Color is an important attribute in any graphics object. In GP, the attributes of graphics
objects consist basically on the color of the vector primitives.

The color attribution process adopted in GP is based on the concept of color map.
This allows an indirect definition of colors in the GP representation space. A color map
is the discretization of a curve in the color space. This discretization is represented
by a table associating a numerical index i € {0,...255} to the color values of the
device ¢ = (r,g,b), with r,¢,b € [0,1]. This table is called look up table (LUT) (see
Figure 2.11).

> >

Frame Buffer LUT

Figure 2.11 Color map.

This model is implemented in the majority of the raster display devices. In these
devices, the matrix representation is stored in the graphics board (frame-buffer), and

20

20 CHAPTER 2. OBJECTS AND GRAPHICS DEVICES

the color of each representation cell (pixel) is obtained by performing an addressing in
the LUT.

The routine gprgb allows to associate a color to an index of the color map. The color
is specified by the intensity values of the R, G and B components. This routine return
the value 1, if the attribution can be performed, and 0 otherwise. In case the color
index has the value —1 the color attibute is set for immediate usage. To support a full
color device, it is convenient to use the immediate mode of gprgb that is implemented
in the display with 24 bit RGB values.

int gprgb(int c, Real r, Real g, Real b);
#define gprgb dvrgb

Color attribution in gp is performed through the current color. This color is set in
the immediate mode of gprgb or selected through the routine gpcolor. The parameter
of this routine is an integer, indicating the table input containing the target color. This
routine returns the index of the previous current color. When the specified index is not
valid, it returns a negative number indicating the size of the color map.

int gpcolor(int c);
#define gpcolor dvcolor

2.5.3 Data Structure and Objects in GP

Given that GP is based on the windows model, the fundamental graphics object in GP
is a box. This object consists of a rectangle on the plane whose sides are parallel to the
coordinate axes. The geometry of this rectangle is given by the coordinates of its main
diagonal (zmin,ymin), (rmax,ymaz). Besides, we associate to this object a scaling
attribute defined by the linear transformation T'(z,y) = (z - zu,y - yu). These scaling
attributes are used to allow a change on the aspect ratio of the box, without requiring
to redefine the entire box.
The basic data structure of this object is the structure Box, given by

(Box data structure 20)=
typedef struct {
Real xmin, xmax;
Real ymin, ymax;
Real xu, yu;
} Box;

Defines:
Box, used in chunk 21.

2.5. THE GP GRAPHICS PACKAGE 21

The box has therefore the dimensions xu (xmax - xmin) and yu (ymax - ymin).
Notice that xu and yu are separate scale factors for each one of the directions.
The internal state of GP is stored in the following data structure:

21 (internal state 21)= (?0—1)
static struct {
Box w, v, d;
real ax ,bx, ay, by;

Ygp=A{
{0.0, 1.0, 0.0, 1.0, 1.0, 1.0},
{0.0, 1.0, 0.0, 1.0, 1.0, 1.0},
{0.0, 1.0, 0.0, 1.0, 1.0, 1.0},
1.0, 0.0, 1.0, 0.0,
};
Defines:

gp, used in chunks 22-25.
Uses Box 20 and real 60 60.

This structure consists of three boxes w, v, d, representing, respectively, the window
in the two-dimensional space of the scene to be visualized, the viewport in normalized
coordinates, and the window of the graphics device.

The coeflicients ax, bx, ay, by, will be used as scale factors to implement the 2D
viewing transformations. Notice the initial state corresponds to the standard config-
uretion where all of the boxes are unitary (and consequently, the viewing mapping is
the identity function).

A window in GP has a color attribute called background color. However, this color
is not stored in the Box data structure. The background color is given by the color at
the index ¢ = 0 of the look up table. This color is attributed using one of the routines
gppallete or gprgb (as previously seen).

The API of GP

The API of GP can be divided in 4 classes of routines according to their function:
e Control;
e Viewing;
e Drawing and Text;

e Graphics Input and Interaction;

Next, we will study in detail the routines of each one of these classes.

22a

22b

22 CHAPTER 2. OBJECTS AND GRAPHICS DEVICES

2.5.4 Control Routines

We can deduce from GP’s internal state that it only supports one window. The control
routines in GP are for manipulating this window on the screen of the graphics work-
station. The routine gpopen initializes GP and opens a window with its name passed
as a parameter.
(initialization 22a)= (7 01)
real gpopen(char* name, int width, int height)
{
real aspect;
gp.d=+dvopen(name, width, height);
calculate_aspect();

gpwindow(0.0,1.0,0.0,1.0);
gpviewport(0.0,1.0,0.0,1.0);
gprgb(0,1.,1.,1.);
gprgb(1,0.,0.,0.);
gpcolor(1);

return (gp.d.xu/gp.d.yu);

}

Uses calculate_aspect 22b, dvopen, gp 21, gpcolor, gprgb, and real 60 60.

This routine calls the dv layer to initialize the device. In this call, the box param-
eters of device d, structure gp are defined. The routine also creates a standardized
window and viewport [0, 1] x [0, 1] by calling the routines gpwindow and gpviewport,
respectively. These two routines will be studied next in the section on viewing routines.
The routine calculate_aspect calculates the box scaling parameters of the device, so
we can map a square window of maximum dimensions in the device:

(window aspect 22b)= (7 0—1)
static void calculate_aspect (void)
{

if (gp.d.xu > gp.d.yuw) {
gp.d.xu /= gp.d.yu;
gp.d.yu = 1.0;

} else {
gp.d.yu /= gp.d.xu;
gp.d.xu = 1.0;
}
}
Defines:

calculate_aspect, used in chunk 22a.
Uses gp 21.

23

2.5. THE GP GRAPHICS PACKAGE 23

Notice the routine gpopen initializes the background color of the window as being
the white color. The routine also attributes the black color to the index 1 of the color
map, and the call to the routine gpcolor (1) attributes this color to the current color
of the package

The routine gpclose shutdowns GP, eventually waiting for a certain time in case the
parameter wait is positive, or for an action from the user in case wait is negative. This
routine is implemented in the layer dv and this is the reason it is defined as a macro.

void gpclose(int wait);
#define gpclose dvclose

The routine gpclear clears the window by painting the background color. The
parameter wait follows the convention described above.

void gpclear(int wait);
#define gpclear dvclear

The routine gpflush immediately executes all the pending operations for any graph-
ics output. The routine gpwait pauses according to the parameter value t: ¢ > 0, waits
for ¢ miliseconds; ¢ < 0, and waits for the user’s input.

void gpflush(void);
#define gpflush dvflush

void gpwait(int t);
#define gpwait dvwait

2.5.5 Viewing Routines

The routines gpwindow and gpviewport are used to specify the 2D viewing transfor-
mation, as we saw in the previous section.
(window 23)= (?0—1)
real gpwindow(real xmin, real xmax, real ymin, real ymax)
{
gp.w
gp.W.Xmax=xmax;
gp.w
gp.W.ymax=ymax;
gpmake () ;
dvwindow(xmin, xmax, ymin, ymax);
return (xmax-xmin)/(ymax-ymin) ;
}
Uses gp 21, gpmake 24b, and real 60 60.

.xXmin=xmin;

.ymin=ymin;

24a

24b

24

(viewport 24a)=
real gpviewport(real xmin, real xmax, real ymin, real ymax)

{

gp.v.xmin=xmin;

gp.V.Xmax=xmax;

gp.v.ymin=ymin;

gp.V.ymax=ymax;
gpmake () ;
dvviewport (xmin, xmax, ymin, ymax);
return (xmax-xmin)/(ymax-ymin);

¥

CHAPTER 2. OBJECTS AND GRAPHICS DEVICES

Uses gp 21, gpmake 24b, and real 60 60.

(7 0—1)

To calculate the viewing transformation coefficients between the window (in the
space of the scene) and the viewport (in normalized coordinates), the routines gpwindow
and gpviewport call the routine gpmake.

(transformation 24b)=
void gpmake(void)

{
real Ax=(gp.d
real Ay=(gp.d
gp.ax = (gp.v.
gp.ay = (gp.v
gp.-bx = gp.v
gp.-by = gp.v
gp.ax = Ax*gp.
gp.ay = Ay*gp.
gp.bx = Ax*gp
gp.by = Ay*gp
b
Defines:

. Xmax—gp.
.ymax-gp.

Xmax-gp.

.ymax-gp.
.xmin-gp.
.ymin-gp.
ax;
ay;
.bx+gp.d.
.by+gp.d.

d.xmin) ;

d.ymin);
v.xmin)/(gp.w.xmax—-gp.w.xmin) ;
v.ymin)/(gp.w.ymax-gp.w.ymin) ;
ax*gp.w.xmin;

ay*gp.w.ymin;

Xmin;
ymin;

gpmake, used in chunks 23 and 24a.
Uses gp 21 and real 60 60.

(7 0—1)

/* map wc to ndc */

/* map ndc to dc */

25a

25b

2.5. THE GP GRAPHICS PACKAGE 25

The viewing transformations are effectively realized by the routines gpview and
gpunview, which map points from the application space to the graphics device space
and vice-versa.

(view 25a)= (7 01)
void gpview(real* x, real* y)
{
x=gp .ax (*x)+gp.bx;
y=gp.ay (*y)+gp.by;
}

Defines:
gpview, used in chunk 29.
Uses gp 21 and real 60 60.

(unview 25b)= (?70—1)
void gpunview(real* x, real* y)
{
*xx=(*x-gp.bx) /gp.ax;
}*y=(*y-gp-by>/gp-ay;

Defines:
gpunview, used in chunks 28 and 29.
Uses gp 21 and real 60 60.

26

26 CHAPTER 2. OBJECTS AND GRAPHICS DEVICES

2.5.6 Drawing Routines

The drawing routines in GP specify the objects displayed in the device.

In GP, polygonal curves (open or closed) and polygonal regions are denominated
polygonal primitive. These primitive can be drawn using a combination of the routines
gpbegin, gppoint and gpend. The primitive is defined by the sequence of coordinates
given by calls to gppoint, delimited by gpbegin and gpend. Notice this schema is
similar to the one in OpenGL.

void gpbegin(int c);
#define gpbegin dvbegin

void gpend(void);
#define gpend dvend

int gppoint(Real x, Real y)
{

gpview (&x,&y) ;

return dvpoint(x,y);

}

The type of primitive polygonal it is specified by the parameter ¢ of the routine
gpbegin.

1 - open polygonal curve
p - closed polygonal curve
f - filled polygon

As example on using this schema is in the implementation of routine gptri, which
draws a triangular region given by

(triangle example 26)=
void draw_triangle(real x1, real yl, real x2, real y2, real x3, real y3)
{
gpbegin(’£’);
gppoint (x1,y1);
gppoint (x2,y2) ;
gppoint (x3,y3) ;
gpend Q) ;
}

Defines:
draw_triangle, never used.
Uses gpbegin, gpend, gppoint, and real 60 60.

2.5. THE GP GRAPHICS PACKAGE 27

Text Routines

A text is a sequence of alpha-numerical characters. The most common attributes of a
text are the color of the characters, the family type of the fonts (Helvética, times, etc.)
and the variations of the font in each family (bold, italic, etc.). GP uses a fixed size
vector font.

The routine gptext draws a sequence of characters s at the position (x,y)

void gptext(Real x, Real y, char* s, char* mode)
#define gptext dvtext

2.5.7 Routines for Graphics Input and Interaction

In general, several input devices exist in a workstation. The most common devices are
the keyboard and the mouse. The keyboard is used for numerical alpha data entry, and
the mouse is used as a locator, that is, a device allowing the user to specify positions
on the screen. The mouse also has buttons allowing the user to define different states
of the device.

The user’s actions in the devices are captured by the system in a process called
pooling: the devices are continuosuly verified by the system, and a queue is created,
where each queue input contains the identification of the device and the data related
to the user interaction with the device. This queue is called event queue of the system.

The gp, in general, supports the mouse and keyboard as input devices. In this way,
it allows access to a queue of events where we have actions from the keyboard, buttons
and relative to the mouse position (locator). There are also other events allowing to
verify the state of the device (e.g. an event to inform there was a change in the size of
a window).

The access to events queue is performed by a single data input routine gpevent,
allowing the user to interact with the system. This routine is used to retrieve the
first event from the event queue associated to the window in GP. The parameter wait
determines the behavior of the routine.

wait!=0, waits until the next event;

wait == 0, returns if the queue is empty.

28

28 CHAPTER 2. OBJECTS AND GRAPHICS DEVICES

(event 28)= (?70—1)
char* gpevent(int wait, real* x, realx y)
{
int ix,iy;
char* r=dvevent(wait,&ix,&iy);
*x=1x; *y=iy;
gpunview(x,y);
return r;
X

Defines:
gpevent, never used.
Uses dvevent, gpunview 25b, and real 60 60.

The routine returns events according to the code below:
bi+ - button ¢ is pressed;
bi- - button ¢ is released;
kt+ - key t is pressed;
ii+ - cursor not moving with button i pressed;
mi+ - cursor moving with button 7 pressed;
g+ - window closed by the windowing manager.
r+ - request for re-drawing;

s+ - window has new size (x,y).

Button Events. In a standard hardware configuretion used by GP, the button devices
correspond to the mouse buttons. The sequence of data of this event begins with the
character b, followed by a digit, 1, 2 or 3, identifying the button, and finally the + sign
to indicate that the button was pressed or - to indicate it was released. In short, the
sequence of button events has the format bi+ or bi -.

Locator Events. The mouse, besides being a button device, is also the standard locator
used in a workstation. Mouse motion events begin with the character m. In this case,
the position of the mouse is stored in the parameter (z,y) of the routine gpevent. We
should observe that simultaneous mouse motion events using buttons are also preceded
by the character m. For example, the mouse motion with the button i pressed is
indicated by the sequence mi+.

29

2.6. COMMENTS AND REFERENCES

Keyboard Events.

29

When the keyboard key k is pressed, it returns the string “kt+”,

indicating the event, where ¢ is the ASCII code of the key.

2.6 Comments and References

The reader can find more information on planar graphics objects and representation in
(?). FUrther informatios on graphics devices can be found in (?).
The external API of GP is composed of the following routines:

(API 29)=
real
void
void
void
void

real
real
void
void

int
int
int
int
void
int
void

void

charx
Defines:

gpopen
gpclose
gpclear
gpflush
gpwait

gpwindow
gpviewport
gpview
gpunview

gppalette
gprgb
gpcolor
gpfont

gpbegin
gppoint
gpend
gptext

gpevent

gpevent, never used.
Uses gpbegin, gpclear, gpclose, gpcolor, gpend, gpflush, gpfont, gppalette, gppoint, gprgb,
gptext, gpunview 25b, gpview 25a, gpwait, and real 60 60.

(char* name) ;
(int wait);
(int wait);
(void);

(int t);

(real xmin, real xmax, real ymin, real ymax);
(real xmin, real xmax, real ymin, real ymax);
(real* x, real* y);
(real* x, realx* y);

(int ¢, char* name);

(int c, real r, real g, real b);
(int c);

(char* name);

(int c);
(real x, real y);
(void);

(real x, real y, charx s, char* mode);

(int wait, realx x, real* y);

30 CHAPTER 2. OBJECTS AND GRAPHICS DEVICES

2.6.1 Programming Layer

The GP graphic library implements the lowest layer of an interactive graphics pro-
gram. It is restricted to the two-dimensional component and it corresponds to the 2D
functionality of the OpenGL library.

2.7 Exercises

2.1. Compile and install the GP library.

2.2. Using the GP library, write an interactive program to model polygonal curves.
The program should write the curve as a list of points.

2.3. Using the GP library, write a program to read files with polygonal curves and to
draw them.

2.4. Design and implement a toolkit interface consisting of the following 2D widgets:
button; valuator; choice; text area and canvas.

2.5. Using the toolkit of the previous exercise, write a program showing a menu com-
posed of several buttons. When a button is pressed, the program should print the text
on the button.

2.6. Using the toolkit of the previous interface, write a program showing a valuator.
When the valuator is modified, the program should print the corresponding value.

2.7. Combine the programs of the previous exercises to implement a complete editor
for polygonal curves. It should contain a menu for the different functions (to read a file,
to write a file, to clean the screen, etc), valuators for window scaling and translations,
and editing functions associated to the mouse buttons (to insert a vertex, to move a
vertex, to delete a vertex).

2.8. Modify the editor for polygonal curves to also work with Bézier curves. Use a
subdivision algorithm for the visualization by curve refinement. Figure 2.12 shows the
example of a curve editor.

2.7. EXERCISES

Hew | Loadl Savel |_BEZiE I:E |_Fj_11

P g X
|
X
* & * =

M Poly SileBS| rEdit Poly

Figure 2.12 Curve Editor.

31

32

CHAPTER 2. OBJECTS AND GRAPHICS DEVICES

