Chapter 3

Interaction and Graphical Interfaces

This chapter is devoted to the developement of interactive programs and the design of
user interfaces.

We are going to build the basic concepts on top of the infrastructure of the gp 2D
graphics package introduced in the previous chapter.

As an overview we will discuss next the problems of: event treatment; interface
actions with callbacks; interaction objects with multiple views, interface managers,
toolkits and widget design.

Finally we will finish the chapter with an example of an actual graphics interactive
program: a polygonal line editor.

3.1 Creating Interactive Programs

Using the simplicity of the function gpevent it is possible to develop graphical interfaces
which possess great complexity and a high degree of interactivity.

In this way, the interaction will be event driven, which makes the implementation
easier.

In the project of a good interface, we need to take into account two main elements:

e Graphical Input/Output;

e Interface Design.

The graphical input/output project consists into the decisions of how the user is
going to specify the various graphical objects of the program and their behaviour.

For example: one can create a line segment in a drawing program by simply mark-
ing two distinct points on the screen, or by using a rubber banding technique, which
amounts to first defining the initial point of the line segment, as an anchor, and subse-
quently dragging the cursor to the line endpoint, as an elastic string. Note that, both

33

34 CHAPTER 3. INTERACTION AND GRAPHICAL INTERFACES

techniques can be used to produce the same result of creating a line segment. But, the
rubber band method, gives more control and visual feedback to the user.

On the other hand, the interface design consists in the creation of a global archi-
tecture of interactive objects that reflects the internal state of the program, and allows
the user to interact with its parameters. This is done through widgets and an interface
manager.

Continuing with the previous example, the whole interface could be made of a set of
buttons for creating, deleting, and modifying line segments. They would be associated
with various interactive methods, such as rubber-banding and others.

3.2 Interaction Fundamentals

The graphics interaction is basically a process by which the user manipulate objects
though various logical commands. Usually, this process involves the combination of
graphics output devices, such as a graphics display, with graphics input devices such
as a mouse.

At the core of the interaction we have a feedback loop such that the user actions are
depicted on the screen, reflecting changes of state caused in these actions.

3.2.1 Graphical Feedback

The graphical feedback essentially couples input and output, such that the graphics
objects involved behave like real and active entities to the user.

One important concept is that of an event, that in general is caused by an input
action of the user, such as moving the mouse. The event should trigger a corresponding
reaction in terms of graphics output, for example: when the mouse moves, the image
of the cursor on the screen changes accordingly. In that way, the user knows that the
system understood the gesture and also can see the current state of the parameters (in
this case the mouse location relative to the screen).

3.2.2 Logical Input Elements

We have already seen in the previous chapter the main abstractions for device inde-
pendent graphics output, and the basic mechanisms for events.

The next step is to develop the concept of logical input elements, that provide graph-
ics input functions. They are:

e Locator
e Buttons

e Keys

3.2. INTERACTION FUNDAMENTALS 35

As can be seen in Figure 3.1, these logical input elements are, usually associated
with the mouse and keyboard. They interface with the gp graphics package through
the function gpevent.

Locator
=) Mouse

Button =) gpevent

Keys === Keyboard

Figure 3.1 Logical Input Devices

The locator provides input for 2D coordinates relative to the window coordinate
system. The buttons provide binary state values (i.e., pressed or released), while the
key are associated with the ASCII character set.

3.2.3 Overview

The process of interface design entails the coupling of graphical input and output
through some feedback implementation model and the construction of an architecture
for an interface manager that coordinates interaction objects.

Feedback Implementation Models

The most common feedback implementation models are:
e Pooling
e Direct Event Handling
e Callbacks

e Boxed Callbacks

In the next sections, we are going to study these models in more detail.

Interface Manager Architectures

The architecture for interface design consists of a package that includes several elements
for the construction of interactive programs.

36 CHAPTER 3. INTERACTION AND GRAPHICAL INTERFACES

The main components of an interface package are:
e Toolkit

e Interface Builder

e Run-time Manager

The toolkit contains a set of pre-packaged widgets, i.e., interface objects, for the
various common interaction tasks, such as selecting an option from a menu or entering
a text string. The interfce builder allow the user to graphically create the interface
layout, while the run-time manager implements the feedback model during program
execution.

In Section 3.5 we will present the architecture and implementation of a simple toolkit.

3.3 Interaction Mechanisms

In order to discuss and compare interaction mechanisms, we are going to show the
pseudo-code of simple programs exemplifying their usage and implementation.

3.3.1 Non-interactive

The simplest graphics program is non-interactive. It’s structure consists of an initial-
ization to create a window and a sequence of drawing commands to display something
on the screen

main ()
{
gpopen() ;
gpwindow () ;
gpviewport () ;
// set gpattributes
// execute drawing primitives

gpclose();
}

3.3.2 Event Driven

The basic event driven interactive program uses the function gpevent to explicitly
handle all graphics input and perform the associated output action.

3.3. INTERACTION MECHANISMS 37

main ()
{
gpopen() ;
gpwindow() ;
gpviewport () ;
draw_initial_state();
while (!quit) {
e = gpevent();
parse_exec_event(e) ;
}
gpclose();
}

Notice that the major implementation burden fall onto the the function
parse_exec_event, which is responsible to explicitly handle all interaction.

parse_exec_event (e)
{
switch (e) {
case k: // key pressed

case m: // mouse movement

As the program gets more complex and the interface more involved, this model
becomes very difficult to extend and maintain. The reason is that each input event
must be handled explicitly taking into account the affected objects and the state of the
program. For example, when a key is pressed, it may have different meanings depending
on where the mouse is located or which object is selected.

3.3.3 Callback Model

The callback model comes to the rescue of the difficulty presented by direct handling
of input events. It uses events, but associates particular events to specific graphical
objects or interface conditions.

For example, a particular function can be associated to a left mouse button press
action. Under this model, that function is called whenever the mouse button is pressed,
thus it is referred as callback function.

38 CHAPTER 3. INTERACTION AND GRAPHICAL INTERFACES

main()

{
gpopen() ;
gpwindow () ;
gpregister("b1+", f1, d1);
gpregister("b2+", £2, d2);

gpmain_loop ()
gpclose()

So, in the initialization fase, the user defines all callback actions through the func-
tion gpregister. Subsequently, the interaction loop is implemented by the function
gpmain_loop that handles the events automatically by calling the desired actions at
the appropriate times. In this way, the behavior of the interation can be changed by
simply replacing the implementation of callbacks.

3.3.4 Callback with Multiple Views

The callback model can be greatly improved by establishing a link between the events
and graphical objects. Note that in the general callback model, the event association
is global, i.e., the same callback is activated for a particular class of event, such as a
mouse button press.

The callback with multiple views model associates a local event to an action. For
example, a different callback is activated depending on where the mouse button is
pressed.

This model is implemented with the help of multiple views. The screen is tiled with
different areas and they different local actions.

For example, the function

mvreg(l,"bl+",displl,idl);

specifies that the callback displ1(id1l) will be activated if the mouse button 1 is
pressed in the screen area vi, while the function

mvreg(2,"bl+",displ2,id2);

specifies a similar action displ2 for the screen area v2.
Of course, in this model is possible to maintain global events. This is done by a
special identifier (-1) for the whole screen.

mvreg(-1,"=q",exit,0); // «call exit(0) if key ’k’ is pressed in any area

3.4. INTERFACE OBJECTS 39

The callback with multiple views is the model that we are going to adopt to build
our tookit infrastructure. Under this model the structure of an interactive program is
as follows:

main ()
{
gpopen ()
mvopen ()
interface_setup()
mvmain_loop ()
gpclose(0)
}

The configuration of the interface is done by the function interface_setup that
defines each view area and the corresponding callbacks, as well as, the initial state of
the interface.

interface_setup()
{

mvviewport(l, x, x, y, y)
mvregister (1, , x, 0)

draw_initial_state()

}

In the next section we will describe the implementation of the for the multiple view
callback model.

3.4 Interface Objects

Graphical interface objects can be created using the multiple view callback model dis-
cussed in the previous section. The multiple viewport framework allows interface ob-
jects to be associated with areas of the screen, while the callback framework makes
these objects active by an event-driven graphical feedback.

The mvcb package provides an integrated implementation of these frameworks.

3.4.1 Multiple Viewports

The multiple viewport framework essentially provides a tiled screen manager on top of
gp. This is done by implementing the abstraction of multiple views. Each view behaves
exactly like the gp package, but confined to a particular screen area.

40a

40b

40 CHAPTER 3. INTERACTION AND GRAPHICAL INTERFACES

The internal state of mv consists of a set of views, each defined by a window and
viewport. There is also the notion of a current view, to which all the gp commands

apply.

(mw internal state 40a)=

static int nv; /* number of views */
static Boxx* Ww; /* windows */
static Box* v; /* viewports */
static int current; /* current view */
Defines:

current, used in chunks 40b, 42, and 44b.

nv, used in chunks 40, 41, 44b, and 45.

v, used in chunks 40, 41, 44-50, 53c, 56b, and 57a.
w, used in chunks 40-42, 44b, and 54-57.

The main control functions of gp are replicated in the mv package to encapsulate the
corresponding functionality.

(mv open 40b)=
int mvopen(int n)
{
if (n<=0) return O;
v=(Box*) emalloc(n*sizeof (Box)); if (v==0) return O;
w=(Box*) emalloc(n*sizeof(Box)); if (w==0) return O;

nv=n;
current=0;
for (n=0; n<nv; n++) {
wln].xu = wln].yu = 1.0;
mvwindow(n,0.0,1.0,0.0,1.0);
mvviewport(n,0.0,1.0,0.0,1.0);
}
return 1;
+
Defines:

mvopen, used in chunk 52b.
Uses current 40a, mvviewport 41c, mvwindow 41b, nv 40a, v 40a, and w 40a.

41a

41b

41c

3.4. INTERFACE OBJECTS

(muv close 41a)=
void mvclose(void)
{
efree(w);
efree(v);
}

Defines:
mvclose, used in chunk 53a.
Uses v 40a and w 40a.

(mv window 41b)=

void mvwindow(int n, real xmin, real xmax, real ymin, real ymax)

{

if (n<0 || n>=nv) return;
wln] .xmin=xmin;

w[n] . xmax=xmax;

w[n] .ymin=ymin;

w[n] . ymax=ymax;
}

Defines:
mvwindow, used in chunks 40b and 54.
Uses nv 40a, real 60 60, and w 40a.

(mv viewport 41c)=

void mvviewport(int n, real xmin, real xmax,

{

if (n<0 || n>=nv) return;
v[n] .xmin=xmin;

v[n] .xmax=xmax;

v[n] .ymin=ymin;

v[n] . ymax=ymax;

}

Defines:
mvviewport, used in chunks 40b, 43, and 54.
Uses nv 40a, real 60 60, and v 40a.

real ymin, real ymax)

41

42 CHAPTER 3. INTERACTION AND GRAPHICAL INTERFACES

42a (muv clear 42a)=

void mvclear (int c)

{
int old=gpcolor(c);
int n=current;

gpbox (w[n] .xmin,w[n] .xmax,w[n] .ymin,w[n] .ymax) ;
gpcolor(old) ;

}

Defines:
mvclear, never used.
Uses current 40a and w 40a.

The auxiliary function mvframe draws an outline around the view making it easier
to see its area on the screen.

42b (mv frame 42b)=

void mvframe(void)

{

int n = current;
gpline(w[n].xmin,w[n].ymin,w[n].xmax,w[n].ymin);
gpline(w([n] .xmax,w[n] .ymin,w[n] .xmax,w[n] .ymax) ;
gpline(w([n].xmax,w[n].ymax,w[n] .xmin,w[n].ymax);
gpline(w[n].xmin,w[n].ymax,w[n].xmin,w[n].ymin);
}

Defines:
mvframe, used in chunk 56a.
Uses current 40a and w 40a.

3.4. INTERFACE OBJECTS 43

The function mvdiv divides a rectangular area of the screen into a tiling of nx by ny

views.

43 (mv divide 43)=
void mvdiv(int nx, int ny, real xvmin, real xvmax, real yvmin, real yvmax)
{

int i,n;
real dx=(xvmax-xvmin)/nx;
real dy=(yvmax-yvmin)/ny;
for (n=0,i=0; i<ny; i++)
{
int j;
real ymax=yvmax-ix*dy;
real ymin=ymax-dy;
for (j=0; j<nx; j++,n++) {
real xmin=xvmin+j*dx;
real xmax=xmin+dx;
mvviewport (n,xmin,xmax,ymin,ymax) ;
}
}
}

Defines:
mvdiv, used in chunk 44a.
Uses mvviewport 41c and real 60 60.

44 CHAPTER 3. INTERACTION AND GRAPHICAL INTERFACES

The function mvmake applies mvdiv to the whole screen area.

44a (mv make 44a)=
void mvmake(int nx, int ny)
{
real x,y;
if (nx>ny) {
x=1.0;
y=((real)ny) /nx;
} else {
x=((real)nx)/ny;
y=1.0;
}
mvdiv(nx,ny,0.0,x,0.0,y);
gpviewport(0.0,x,0.0,y);
}

Defines:
mvmake, never used.
Uses mvdiv 43 and real 60 60.

The function mvact makes the specified view active, i.e., it becomes the current

view.

44b (mv activate 44b)=

int mvact(int n)

{

int old=current;

if (n<0 || n>=nv) return old;

gpwindow (w[n] .xmin,w[n] .xmax,w[n] .ymin,w[n] .ymax) ;
gpviewport (v[n] .xmin,v[n].xmax,v[n].ymin,v[n].ymax);
current=n;

return old;

}

Defines:
mvact, used in chunks 45 and 56a.
Uses current 40a, nv 40a, v 40a, and w 40a.

45

3.4. INTERFACE OBJECTS 45

3.4.2 Callback with Vlews

The callback model is implemented for multiple views bu creating a mechanism asso-
ciating events with views.
For this purpose the function mvevent is defined.

(mv event 45)=
char* mvevent(int wait, real* x, real* y, int* view)
{
int n; real gx,gy, tx,ty;
char* r=gpevent(wait,&gx,&gy) ;
if (r==NULL) return r;
gpview(&gx,&gy); tx=gx; ty=gy;
gpwindow(0.0,1.0,0.0,1.0);
gpviewport(0.0,1.0,0.0,1.0);
gpunview (&gx,&gy) ;
*view=-1;
for (n=0; n<nv; n++) {
if (gx>=v[n].xmin && gx<=v[n].xmax && gy>=v[n].ymin && gy<=v[n].ymax) {
int old=mvact(n);
gpunview (&tx,&ty) ;
*X=tX;
*y=ty;
*view=n;
mvact (0ld) ;
break;
}
}
return r;
}

Defines:
mvevent, used in chunk 49a.
Uses mvact 44b, nv 40a, real 60 60, and v 40a.

46 CHAPTER 3. INTERACTION AND GRAPHICAL INTERFACES

The callback abstraction is implemented through a list of events patterns that are
matched to views.

46 (mv callbacks state 46)=
typedef struct event Event;

struct event {
int v;

char* s;
MvCallback* f;
voidx* d;
Event* next;

};

static Eventx* firstevent=NULL;

static int gp_wait=1;
Defines:

firstevent, used in chunks 47 and 48.

gp-wait, used in chunks 48 and 49a.
Uses next 47 60 and v 40a.

47

3.4. INTERFACE OBJECTS 47

For convenience we will define the following macros:

(mucb macros 47)=

#define new(t) ((t*) emalloc(sizeof(t)))

#define streq(x,y) (strcmp(x,y)==0)

#define V() ((L)->v)

#define S(_) ((L)->s)

#define F(_) ((L)—>1)

#define D(_) ((L)->d)

#define next(_) ((_)->next)

#define foreachevent(e) for (e=firstevent; e!=NULL; e=next(e))

static Event* findevent (int v, char* s);

static Event* matchevent (int v, char* s);

static int match (char *s, char xpat);
Defines:

D, used in chunks 48 and 49a.
F, used in chunks 48 and 49a.
findevent, used in chunk 48.
foreachevent, used in chunks 49b and 50a.
matchevent, used in chunk 49a.
new, used in chunks 48 and 62.
next, used in chunks 46, 48, and 62.
S, used in chunks 48-50.
streq, used in chunk 49b.
V, used in chunks 48-50.
Uses firstevent 46, match 50b, and v 40a.

48 CHAPTER 3. INTERACTION AND GRAPHICAL INTERFACES

The function mvregister associates a callback action to a particular event and view.

48 (mu register function 48)=
MvCallback* mvregister(int v, char* s, MvCallback* f, void* d)
{
MvCallback* old;
Event* e=findevent(v,s);
if (e==NULL) {
static Event* lastevent=NULL;
e=new(Event) ; /* watch out for NULL! */
V(e)=v;
S(e)=s;
F(e)=NULL;
next (e)=NULL;
if (firstevent==NULL) firstevent=e; else next(lastevent)=e;
lastevent=e;
}
old=F(e);
F(e)=f;
D(e)=d;
if (s[0]==’i’ && f!=NULL) gp_wait=0;
return old;
}

Defines:
mvregister, used in chunks 52b and 55b.

Uses D 47, F 47, findevent 47 49b, firstevent 46, gp_wait 46, new 47 60, next 47 60, S 47, V 47,
and v 40a.

3.4. INTERFACE OBJECTS 49

The mvmainloop is the function that actually implements the run-time callback
model matching events to views.

49a (mv mainloop 49a)=
void mvmainloop(void)
{
for (5;) {
real x,y;
int v;
char* s=mvevent(gp_wait,&x,&y,&v) ;
Event*e=matchevent(v,s);
if (e!=NULL && F(e)(D(e),v,x,y,s))
break;
}
}

Defines:
mvmainloop, used in chunk 53b.
Uses D 47, F 47, gp_wait 46, matchevent 47 50a, mvevent 45, real 60 60, and v 40a.

The functions findevent and matchevent are used to query the list of event patterns
when an event is processed.

49b (find event 49b)=
static Event* findevent(int v, char* s)
{
Eventx e;
foreachevent (e) {
if (V(e)!=v) continue;
if (s==NULL && S(e)==NULL) break;
if (s==NULL || S(e)==NULL) continue;
if (streq(S(e),s)) break;
}
return e;
}

Defines:
findevent, used in chunk 48.
Uses foreachevent 47, S 47, streq 47, V 47, and v 40a.

50 CHAPTER 3. INTERACTION AND GRAPHICAL INTERFACES

50a (match event 50a)=
static Event* matchevent(int v, char* s)
{
Eventx e;
foreachevent(e) {
if (V(e)<0 || V(e)==v)
if (match(S(e),s)) break;
}
return e;
}

Defines:
matchevent, used in chunk 49a.
Uses foreachevent 47, match 50b, S 47, V 47, and v 40a.

The actual pattern matching of strings is done by the auxiliary function match.

50b (match string 50b)=
static int match(char *s, char *pat)
{
if (s==NULL) return pat==NULL;
if (pat==NULL) return s==NULL;
for (; #*s!=0; s++, pat++) {
if (*s!=xpat) return O;
}
return 1;
}

Defines:
match, used in chunks 47 and 50a.

3.5. TOOLKITS 51

3.5 Toolkits

The tk toolkit package builds on top of the mvcb package to create interface objects
(i.e., widgets). In this way, rectangular areas of the screen are associated with such
objects and the tk library implements the proper feedback for each type of widget.
This is done by registering specific callbacks for each active widget.

For example, a pushbutton widget will have as a state a binary value (on / off)
and it will be materialized as a box on the screen with a text over a black or white
background, depending on the current value. Every time the user clicks on the button,
it changes state and the callback function informs the user program that the value has
changed. Notice that the graphical feedback is handled automatically by the widget.

In summary, the toolkit creates a layer of abstraction that implements basic interface
objects to be used by the application program.

3.5.1 Basic Elements

The central issue in the design of an interface toolkit is the definition of the set of
widgets to be implemented and the mechanisms for creating new widgets.

Here we are going to suggest a minimum set of widgets that implement the essential
functionality of a general user interface.

The minimum toolkit is composed of the following widgets: (a) Button; (b) Slider;
(c) Selection; (d) Text area; and (e) Graphics canvas. A simple graphical depiction of
each widget is shown in Figure 3.2.

“E Choice 1 |!||

(c)

Text Input ..
(d)

Figure 3.2 Essential Widgets: (a) Button; (b) Slider; (c¢) Selection; (d) Text Area.

52a

52b

52 CHAPTER 3. INTERACTION AND GRAPHICAL INTERFACES

3.5.2 The TK package

The widget API consists of functions for creating/destroying widget instances, mapping
and unmapping them on the screen. These functions are:

w = create_widget (pos, par, fun)
destroy_widget (w)

map_widget (w)

unmap_widget (w)

The internal state of the package has a vector of widget pointers, the size of the
vector, and the last available entry in the vector.

(tk local state 52a)=
Widget **wa = NULL;
int wn = O;
int wi = O;

Defines:
wa, used in chunks 52-54.
wi, used in chunks 52-54.

wn, used in chunks 52-54.
Uses Widget 57b.

The basic functionality of the run-time interface manager is implemented through
the functions tk_open, tk_close and tkmainloop, which respectively initializes the
interface, terminates the interface and handles the interaction loop.

(tk initialization 52b)=
void tk_open(int n)
{
int i;
mvopen (n) ;
wa = NEWARRAY(n, Widget *);
for (i=0; i<mn; i++)
wa[i] = NULL;
wn = n;
wi = 0;
mvregister(-1,"r",tk_redraw,NULL) ;
gpflush();
}

Defines:
tk_open, never used.
Uses mvopen 40b, mvregister 48, tk_redraw 53c, wa 52a, wi 52a, Widget 57b, and wn 52a.

3.5. TOOLKITS 53

53a (tk close 53a)=
void tk_close()
{
efree(wa) ;
wa = NULL; wn = wi = 0;
mvclose();
}

Defines:
tk_close, never used.
Uses mvclose 4la, wa 52a, wi 52a, and wn 52a.

53b (tk main loop 53b)=
void tk_mainloop()
{
mvmainloop();
}

Defines:
tk_mainloop, never used.
Uses mvmainloop 49a.

The function tk_redraw is used to display all the current active widgets on screen.

53c (tk redraw 53c)=
int tk_redraw(void* p, int v, real x, real y, char* e)
{
int i;
fprintf(stderr, "redraw\n"); fflush(stderr);
for (i=0; i<wi; i++) {
switch (wal[i]l->type) {
case TK_BUTTON:
button_draw(wal[i], 1); break;
default:
error ("tk"); break;
}
}
gpflush();
return O;
}

Defines:
tk_redraw, used in chunk 52b.
Uses button_draw 56a, real 60 60, redraw 62, TK_BUTTON, v 40a, wa 52a, and wi 52a.

54 CHAPTER 3. INTERACTION AND GRAPHICAL INTERFACES

A new widget is instantiated by calling the function tk_widget and specifying its
type and parameters.

54 (tk widget 54)=
Widget* tk_widget(int type, real x, real y, int (*f) (), void *d)
{
Widget *w = widget_new(type, x, y, 0.2, f);
if (wi >= wn)
error("tk");
w—>id = wit+;
wal[w—>id] = w;
mvwindow(w->id, 0, 1, 0, 1);
mvviewport (w->id, w->xo0, w->X0 + W->XS, W->y0O, W->y0o + Ww->ys);
switch (type) {
case TK_BUTTON:
button_make(w, d); break;
default:
error("tk"); break;
+
return w;
}

Defines:
tk_widget, never used.

Uses button_make 55b, mvviewport 41c, mvwindow 41b, real 60 60, TK_.BUTTON, w 40a, wa 52a, wi 52a,
Widget 57b, widget new 55a, and wn 52a.

3.5. TOOLKITS 55

The internal function widget new creates a generic widget object that should sub-
sequently be bound to a specific widget class.

55a (new widget 55a)=
Widget* widget_new(int type, real x, real y, real s, int (*£f)())
{
Widget *w = NEWSTRUCT(Widget);
w—>id = -1;
w->type = type;
W->X0 = X; W->yo =Yy,

W->XsS = W->ys = S;
w—>f = £f;
w—>d = NULL;
return w;
}
Defines:

widget_new, used in chunk 54.
Uses real 60 60, w 40a, and Widget 57b.

A new widget class is defined into the tk framework by specifying functions for
creation and drawing, as well as the interaction mechanism which is handled through
callbacks under the mvcb package.

As an example of creation of a new widget class, we are going to show ho to define
a button widget. This is done through the functions button make and button_draw.

55b (make button 55b)=
void button_make(Widget *w, char *s)
{
mvregister (w->id,"b1+" ,button_pressed,w) ;
mvregister (w->id,"b1-",button_released,w);

w—->d = s;
button_draw(w, 1);
}
Defines:

button_make, used in chunk 54.
Uses button_draw 56a, button_pressed 56b, button_released 57a, mvregister 48, w 40a,
and Widget 57b.

56 CHAPTER 3. INTERACTION AND GRAPHICAL INTERFACES

56a (draw button 56a)=
void button_draw(Widget *w, int posneg)
{
char *label = w->d;
int fg, bg;
if (posneg) {
fg = 1; bg
} else {
fg = 0; bg
}
mvact (w->id) ;
gpcolor(fg) ;
gpbox (0., 1., 0., 1.);
gpcolor (bg) ;
gptext(.2, .2, label, NULL);
mvframe() ;
gpflush();

I
o

]
[y
-

}

Defines:
button_draw, used in chunks 53c and 55-57.
Uses mvact 44b, mvframe 42b, w 40a, and Widget 57b.

The button behavior is defined through the callbacks button_pressed and
button_released which handle respectively the events button press and release.

56b (press action 56by=
int button_pressed(void* p, int v, real x, real y, char* e)
{
button_draw(p, 0);
return O;
}

Defines:
button_pressed, used in chunk 55b.
Uses button_draw 56a, real 60 60, and v 40a.

57a

57b

3.5. TOOLKITS 57

(release action 57a)=
int button_released(void* p, int v, real x, real y, charx e)
{
Widget *w = p;
button_draw(w, 1);
return w->f();
}

Defines:
button_released, used in chunk 55b.
Uses button_draw 56a, real 60 60, v 40a, w 40a, and Widget 57b.

A widget object is defined by a data structure that contains its id, type, position
and size on screen, local data and an application callback function.

(widget data structure 57b)=
typedef struct Widget {
int id;
int type;
real xo, yo;
real xs, ys;
void* d;
int (x£) O ;
} Widget;
Defines:

Widget, used in chunks 52 and 54-57.
Uses real 60 60.

58

CHAPTER 3. INTERACTION AND GRAPHICAL INTERFACES

A0 th test

Buttan 1

Figure 3.3 Example of interactive program using TK

3.5.3 Example

As an example of a graphics interactive program that uses the tk toolkit to generate
its interface we show below a simple application that creates two buttons on screen,
one for printing a value and the another for quitting the program. Figure 3.3 shows
the interface layout of the program.

int main(int argc, charx argv[])

{

¥

Widget *wO;

gpopen("tk test", 512, 512);

tk_open(10);

tk_widget (TK_BUTTON, .2, .5, butl, "Button 1");
tk_widget (TK_BUTTON, .6, .5, but2, "Button 2");
tk_mainloop();

tk_close();

gpclose(0);

int but1()

{

}

fprintf (stderr, "Button 1 pressed\n"); fflush(stderr);
return O;

3.6. POLYGON LINE EDITOR 59

int but2()

{
fprintf(stderr, "Button 2 pressed - quitting\n"); fflush(stderr);
return 1; // exits the main loop when 1 is returned.

}

3.6 Polygon Line Editor

As an example of the use of a graphics canvas, we show in this section the implementatio
of a polygon line editor application.

Note that the program implements a rubber banding method for line input as dis-
cussed in the introduction of this chapter.

The screen of the program is depicted in Figure 3.4.

A.0.N polygonal line editor

Figure 3.4 Polygon Line Editor

60 CHAPTER 3. INTERACTION AND GRAPHICAL INTERFACES

60 (ple state 60)=
#define TOL tol
typedef struct point Point;
struct point {
real X,¥;

Point* next;
Point* prev;

s

void redraw (int clear);

void delpoints (void);

void showpolygon (void);

void showspline (void);

void showpoints (void);

void addpoint (real x, real y);
void movepoint (real x, real y);

void delpoint (real x, real y);
void startmove (real x, real y);

void endmove (real x, real y);

void showchange (Point* p, int c);

void showpoint (Point* p);

void showside (Point* p, Point *q);
Point* findpoint (real x, real y);
Callback

do_polygon,

do_quit,

do_redraw,
do_addpoint,
do_startmove,
do_endmove,
do_delpoint,
do_movepoint;

#define X(p) ((p)—>x)
#define Y(p) ((p)->y)

3.6. POLYGON LINE EDITOR 61

#define new(t) ((t*)emalloc(sizeof(t)))
#define next(p) ((p)->next)
#define prev(p) ((p)->prev)

static Pointx* firstpoint=NULL;
static Pointx* lastpoint=NULL;
static Pointx* moving=NULL;
static int showingpolygon=1;
static int showingpoints=1;
static real xmin = 0, xmax = 1, ymin = 0, ymax = 1;
static real aspect = 1, tol = 0.1;
Defines:

findpoint, never used.

firstpoint, used in chunk 62.
lastpoint, used in chunk 62.
moving, used in chunk 62.

new, used in chunks 48 and 62.
next, used in chunks 46, 48, and 62.
prev, used in chunk 62.

real, used in chunks 21b, 22, 24-27, 29, 30, 41, 43-45, 49a, 53-57, and 62.
showingpoints, used in chunk 62.
showingpolygon, used in chunk 62.
TOL, used in chunk 62.

X, used in chunk 62.

Y, used in chunk 62.

Uses addpoint 62, delpoint 62, delpoints 62, do_addpoint 62, do_delpoint 62, do_endmove 62,
do_movepoint 62, do_polygon 62, do_quit 62, do_redraw 62, do_startmove 62, endmove 62,
movepoint 62, redraw 62, showchange 62, showpoint 62, showpoints 62, showpolygon 62,
showside 62, and startmove 62.

62 CHAPTER 3. INTERACTION AND GRAPHICAL INTERFACES

62 (ple functions 62)=
int main(int argc, char* argvl[])
{
gpopen("polygonal line editor", 512 * aspect, 512);
gpwindow (xmin,xmax, ymin,ymax);

gpmark(0,"B"); /* filled box mark */

gpregister("kp",do_polygon,0);
gpregister("kq",do_quit,0);
gpregister("kr",do_redraw,0) ;
gpregister("k\f",do_redraw,0) ;
gpregister("bl+",do_addpoint,0);
gpregister ("kd",do_delpoint,0);
gpregister("b3+",do_startmove,0);
gpregister ("b3-",do_endmove,0) ;
gpregister("m3+",do_movepoint,0);

gpmainloop();
gpclose(0);

void redraw(int clear)
{
if (clear)
gpclear(0);
if (showingpolygon)
showpolygon() ;
showpoints();
gpflushQ;
}

void delpoints(void)

{
firstpoint=lastpoint=NULL; /* lazy! */
}

void addpoint(real x, real y)

{

3.6. POLYGON LINE EDITOR 63

Point* p=new(Point) ;
X(p)=x;
Y(p)=y;
next (p)=NULL;
if (showingpoints) showpoint(p);
if (firstpoint==NULL) {
prev(p)=NULL;
firstpoint=p;
} else {
prev(p)=lastpoint; next(lastpoint)=p;
if (showingpolygon) showside(lastpoint,p);
}
lastpoint=p;
}

void delpoint(real x, real y)

{

Point* p=findpoint(x,y);

if (p!=NULL) {
if (prev(p)==NULL) firstpoint=next(p); else next(prev(p))=next(p);
if (next(p)==NULL) lastpoint=prev(p); else prev(next(p))=prev(p);
redraw(1) ;

}

}

void startmove(real x, real y)
{
moving=findpoint(x,y);
if (moving!=NULL) {
x=X(moving); y=Y(moving);
gpcolor(0); gpplot(x,y); gpcolor(1l);
gpmark (0,"b"); gpplot(x,y);
}
}

void movepoint(real x, real y)

{
if (moving!=NULL) {
showchange (moving,0) ;

64 CHAPTER 3. INTERACTION AND GRAPHICAL INTERFACES

X(moving)=x; Y(moving)=y;
showchange (moving, 1) ;
}
else startmove(x,y);

}

void endmove(real x, real y)
{

if (moving!=NULL) {

gpmark (0,"B") ;

redraw(0) ;

moving=NULL;

}
}

Point* findpoint(real x, real y)
{
Point* p=firstpoint;
for (p=firstpoint; p!=NULL; p=next(p)) {
if ((fabs(X(p)-x)+fabs(Y(p)-y))<TOL) break;
}
return p;

3

void showpoints(void)

{

Point* p;

for (p=firstpoint; p!=NULL; p=next(p))
showpoint (p) ;

gpflushQ;

}

void showpolygon(void)

{

Point* p;

for (p=firstpoint; p!=NULL; p=next(p))
showside(p,next(p));

gpflush();

}

3.6. POLYGON LINE EDITOR 65

void showpoint(Point* p)
{

gpplot (X(p),Y(p));

}

void showside(Point* p, Point *q)
{

if (p!=NULL && q!=NULL) gpline(X(p),Y(p),X(q),Y(q));
}

void showchange(Point* p, int c)
{
gpcolor(c);
showpoint (p) ;
if (showingpolygon) {
showside (prev(p),p);
showside (p,next(p));
}
gpflush();
}

int do_clear(char* e, real x, real y, void* p)
{

delpoints();

redraw(1);

return O;

}

int do_polygon(char* e, real x, real y, void* p)
{

showingpolygon=!showingpolygon;

redraw(1) ;

return O;

}

int do_quit(char* e, real x, real y, void* p)
{

return 1;

66 CHAPTER 3. INTERACTION AND GRAPHICAL INTERFACES

int do_redraw(charx e, real x, real y, voidx* p)
{

redraw(1);

return O;

}

int do_addpoint(char* e, real x, real y, void* p)
{

addpoint (x,y);

gpflush();

return O;

}

int do_startmove(char* e, real x, real y, void* p)
{

startmove (x,y) ;

gpflushQ;

return O;

3

int do_endmove(char* e, real x, real y, void* p)
{

endmove (x,y) ;

gpflushQ);

return O;

}

int do_delpoint(char* e, real x, real y, void* p)
{

delpoint (x,y);

gpflush();

return O;

}

int do_movepoint(char* e, real x, real y, void* p)
{

movepoint (x,y) ;

3.6. POLYGON LINE EDITOR

gpflush();
return O;

¥

Defines:
addpoint, used in chunk 60.
delpoint, used in chunk 60.
delpoints, used in chunk 60.
do_addpoint, used in chunk 60.
do_clear, never used.
do_delpoint, used in chunk 60.
do_endmove, used in chunk 60.
do_movepoint, used in chunk 60.
do_polygon, used in chunk 60.
do_quit, used in chunk 60.
do_redraw, used in chunk 60.
do_startmove, used in chunk 60.
endmove, used in chunk 60.
findpoint, never used.
main, used in chunks 412, 417, and 419.
movepoint, used in chunk 60.
redraw, used in chunks 53c and 60.
showchange, used in chunk 60.
showpoint, used in chunk 60.
showpoints, used in chunk 60.
showpolygon, used in chunk 60.
showside, used in chunk 60.
startmove, used in chunk 60.

Uses firstpoint 60, lastpoint 60, moving 60, new 47 60, next 47 60, prev 60, real 60 60,
showingpoints 60, showingpolygon 60, TOL 60, X 60, and Y 60.

67

68 CHAPTER 3. INTERACTION AND GRAPHICAL INTERFACES

3.7 Review

In this chapter we presented an architecture for interface design that has four layers, as
show in Figure 3.5. The first layer is the graphics interactive program; the second layer
is the interface toolkit, implemented by the tk package and the mvcb library. The
third layer is the graphical input and output, implemented by the gp package. The
fourth layer is the window system, which is plataform dependent, for example, X11 in
the Linux platform, Vista in the Microsoft Windows platform and Aqua / Cocoa for
the MacOS X platform.

Graphics Interactive Program

l

Interface Toolkit TK

l MVCB

Logical I/0 Elements GP
Window System X11

Figure 3.5 Implementation Layers

3.8 Comments and References

In this chapter, we presented the implementation of a library for interface design in
Computer Graphics.
Some of the popular toolkit libraries are: QT, GTK, FLTK and Glui.

3.9. EXERCISES 69

3.8.1 Summary
The external API of the MVCB library is composed of the following routines:

int mvopen (int n);

void mvclose (void);

void mvwindow(int n, real xmin, real xmax, real ymin, real ymax);
void mvviewport(int n, real xmin, real xmax, real ymin, real ymax);
int mvact (int n);

void mvclear (int c);

void mvframe (void);

void mvmake (int nx, int ny);

void mvdiv (int nx, int ny, real xmin, real xmax, real ymin, real ymax);
char* mvevent (int wait, real* x, real* y, int* view);

void mvmainloop(void);

MvCallback* mvregister(int v, char* s, MvCallback* f, void* d);

3.9 Exercises

3.1. Incorporate map and unmap operations tin the TK library.
3.2. Extend the TK library to include a slider widget.

3.3. Extend the TK library to include a choice widget.

3.4. Extend the TK library to include a text widget.

70

CHAPTER 3. INTERACTION AND GRAPHICAL INTERFACES

