

Exploring Community Photo Collections

Professor and project's advisor: Luiz Velho Student: César Morais Palomo cpalomo@inf.puc-rio.br

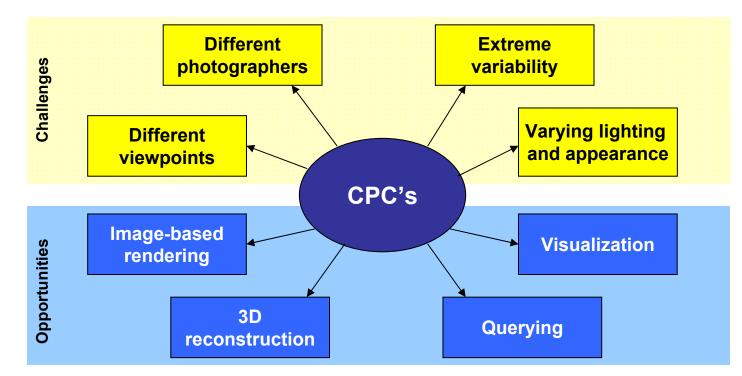
Motivation

Fact (= opportunity): more than 10 million members of the photo-sharing Web site Flickr snap pictures of their surroundings and then post those photos on the Internet

Do the opposite: download photos from Flickr and use them to recreate the original scenes

Google Images and Flickr: powerful new type of image dataset for computer vision and computer graphics research

Characteristics of CPC's



Objective: find algorithms that operate robustly and successfully on such image sets to solve problems in computer vision and computer graphics

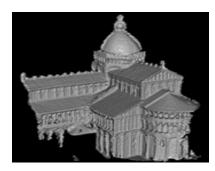
Related work

2006 Noah Snavely et al's *Photo Tourism*

 Developed for browsing large collections of photographs in 3D. It automatically computes each photo's viewpoint and a sparse 3D model of the scene. Photo explorer for moving about the 3D scene, through the photos.

2008 Noah Snavely et al's Finding Paths Through World Photos

 Presents further advances in the navigation control. Exposes details of how to discover a set of paths for traversing interesting regions and viewpoints of a scene, and how to take advantage of them to improve the user control during image-based rendering.

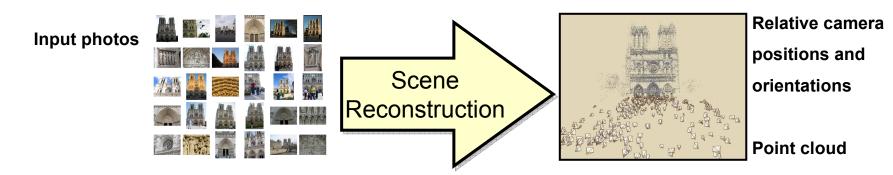


2007 Goesele et al's *Multi-View Stereo for Community Photo* Collections

Try to reconstruct the 3D geometry of a scene from photo collections. Remarkable results.

27/11/2008

Proposal



- Develop a full functioning structure from motion (SfM) framework to be used for CPC's, in a similar fashion to what has been done in Photo Tourism work.
- Follow the steps shown in the cited related work to validate the effectiveness of the *SfM* method.
- Make some minor modifications to the general proposed in order to try to improve performance.

27/11/2008

Method

- 1. Features/keypoint detection in the input images using SIFT
- 2. Features matching for each pair of images
- 3. Fundamental matrix estimation using the eight-point algorithm, using *RANSAC*
- 4. Removal of matches that are outliers to the estimated fundamental matrix
- 5. Structure from motion step to estimate the parameters of each pair of cameras, in a bundle adjustment process

Method – Step 1

1. Features/keypoint detection in the input images using SIFT

- 2. Features matching for each pair of images
- 3. Fundamental matrix estimation using the eight-point algorithm, using *RANSAC*
- 4. Removal of matches that are outliers to the estimated fundamental matrix
- 5. Structure from motion step to estimate the parameters of each pair of cameras, in a bundle adjustment process

Features detection

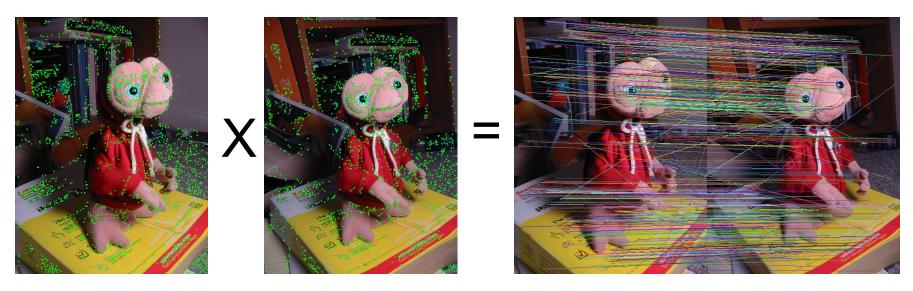
- Detect keypoints for each image using Lowe's SIFT
- To try to speed up this step, used Wu' *SiftGPU*
 - Implementation of SIFT for GPU
 - GPU shaders used in Gaussian pyramid construction, DoG keypoint detection and descriptor generation
 - Processes pixels and features paralelly in GPU and builds compact feature list by using GPU reduction: per-pixel processing changed to per-feature processing – reduces readback time

Method – Step 2

- 1. Features/keypoint detection in the input images using SIFT
- 2. Features matching for each pair of images
- 3. Fundamental matrix estimation using the eight-point algorithm, using *RANSAC*
- 4. Removal of matches that are outliers to the estimated fundamental matrix
- 5. Structure from motion step to estimate the parameters of each pair of cameras, in a bundle adjustment process

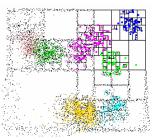
Features matching

- SIFT descriptor: 128-dimension vector of integers
- Matching: try to identify corresponding features for each pair of images - relationship among photos



Robust features matching

- Naive approach for matching: brute-force computation of all distances for complete list of features for each pair of images
- Better try: use Mount's approximate nearest neighbors library to speed up search
 - Data structures and algorithms for exact and approximate nearest neighbor searching in arbitrarily high dimensions
 - Based on kd-trees and box-decomposition trees
 - Distances measured using any class of distance functions called Minkowski metrics



Method – Step 3

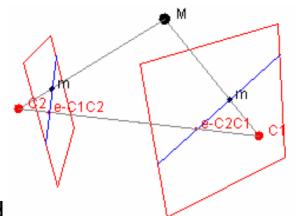
- 1. Features/keypoint detection in the input images using SIFT
- 2. Features matching for each pair of images
- 3. Fundamental matrix estimation using the eight-point algorithm, using *RANSAC*
- 4. Removal of matches that are outliers to the estimated fundamental matrix
- 5. Structure from motion step to estimate the parameters of each pair of cameras, in a bundle adjustment process

Fundamental matrix

- Computer vision: 3x3 matrix of rank 2 which relates corresponding points in stereo images: allows for detection of wrong correspondences
- Epipolar geometry: with corresponding points m and m' in a stereo image pair, Fm describes the epipolar line on which m' on the other image should lie:

$$m'^{T} Fm = 0 \qquad m = \begin{bmatrix} x & y & 1 \end{bmatrix}^{T} \\ m' = \begin{bmatrix} x' & y' & 1 \end{bmatrix}^{T}$$

 Being of rank 2 and determined only up to scale, the F-matrix can be estimated given at least seven point correspondences



F-matrix estimation: the 8-point algorithm

Rewriting the equation:

$$\begin{bmatrix} xx' & yx' & x' & xy' & yy' & y' & x & y & 1 \end{bmatrix} \mathbf{f} = \mathbf{0}$$

$$\mathbf{f} = \begin{bmatrix} F_{11} & F_{12} & F_{13} & F_{21} & F_{22} & F_{23} & F_{31} & F_{32} & F_{33} \end{bmatrix}$$

- F-matrix: determined up to a scale factor
 - 8 equations are required to obtain a unique solution
- By stacking eight of these equations (8 point correspondences) in matrix A:

$$Af = 0$$

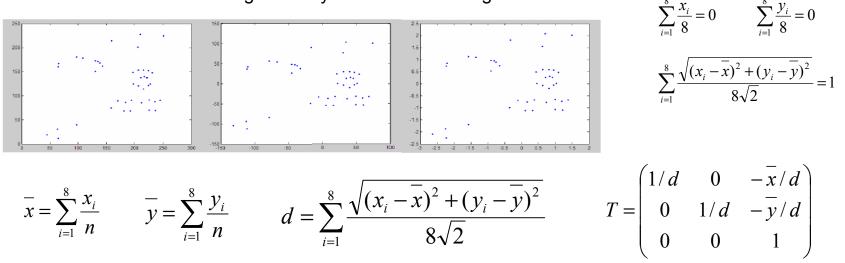
• Least-squares: perform SVD on A to get the eigenvector associated with the smallest singular value, i.e., the Null Space for A.

$$[U, S, V] = svd(A)$$

- Select the column of V that is associated with the least (or zero) singular value in S: the last column is our F_cand
- Enforce constraint that fundamental matrix has rank 2 by performing a SVD on F_cand and then reconstructing with the two largest singular values

F-matrix estimation: normalization

- F is often ill-conditioned: small variations in the data points (x,y coordinates) selected will completely mess up the calculation for F
 - i.e, magnitude of elements in A matters!
- How to solve or minimize this problem? Perform data normalization:
 - Translate mean location to origin
 - Scale so that average x and y distance to the origin is 1



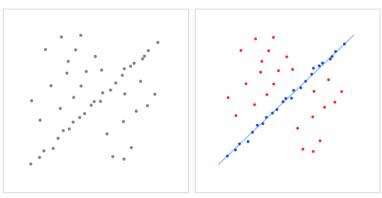
F-matrix estimation: normalized 8-point algorithm

- Calculate normalization matrices for chosen points
- Use normalized points in the described 8-point algorithm
- Obtain the fundamental matrix for the original untransformed data by taking:

$$\mathbf{F} = \mathbf{T}_{1}^{\mathrm{T}} \mathbf{F'} \mathbf{T}_{r}$$

RANSAC - RANdom SAmple Consensus

- **Iterative method** to estimate parameters of a mathematical model from a set of observed data which contains outliers
- A **non-deterministic** algorithm in the sense that it produces a reasonable result only with a certain probability, with this probability increasing as more iterations are allowed
- Very interesting for **robust estimation** of a model when data contains **outliers** and **noise**



RANSAC general method

Repeat for a fixed number of iterations:

```
maybe_inliers := n randomly selected values from data
maybe_model := model parameters fitted to maybe_inliers
consensus_set := maybe_inliers
```

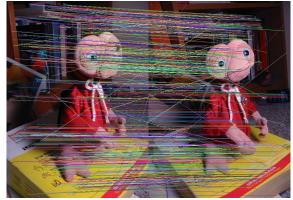
for every point in data not in maybe_inliers
 if point fits maybe_model with an error smaller than t
 add point to consensus set

if number of elements in consensus_set is > d (good model, now test how good it is)
 better_model := model parameters fitted to all points in consensus_set
 this_error := a measure of how well better_model fits these points
 if this_error < best_error (best model found so far)
 best_model := better_model
 best_consensus_set := consensus_set
 best error := this error</pre>

RANSAC for F-matrix estimation

Repeat for a fixed number of iterations:

```
maybe_inliers := 8 randomly selected matches
F_cand := normalized_8-point_algorithm using maybe_inliers
this_error = evaluate F_cand against all data
if this_error < best_error (best F found so far)
    F_best := F_cand
    best_error := this_error</pre>
```



After the fixed number of iterations, find inliers and outliers:

```
consensus_set := inliers for F_best, using distance to epipolar line as the err measure
outliers_set := all matches - consensus_set
```

How to evaluate F_cand:

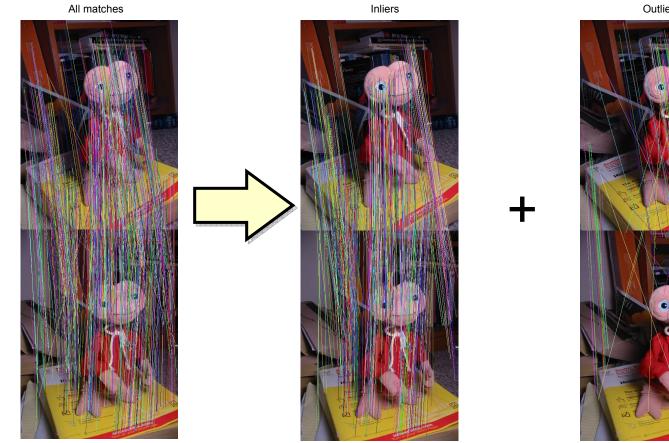
```
error = 0
for each match (p1,p2) in all data
    error += findDistanceToEpipolarLine(p1, p2, F_cand) +
        findDistanceToEpipolarLine(p2, p1, transpose(F_cand))
```

Method – Step 4

- 1. Features/keypoint detection in the input images using SIFT
- 2. Features matching for each pair of images
- 3. Fundamental matrix estimation using the eight-point algorithm, using *RANSAC*
- 4. Removal of matches that are outliers to the estimated fundamental matrix
- 5. Structure from motion step to estimate the parameters of each pair of cameras, in a bundle adjustment process

Outliers removal by RANSAC

RANSAC not only robustly fits a good F-matrix, but also remove outliers • from consideration



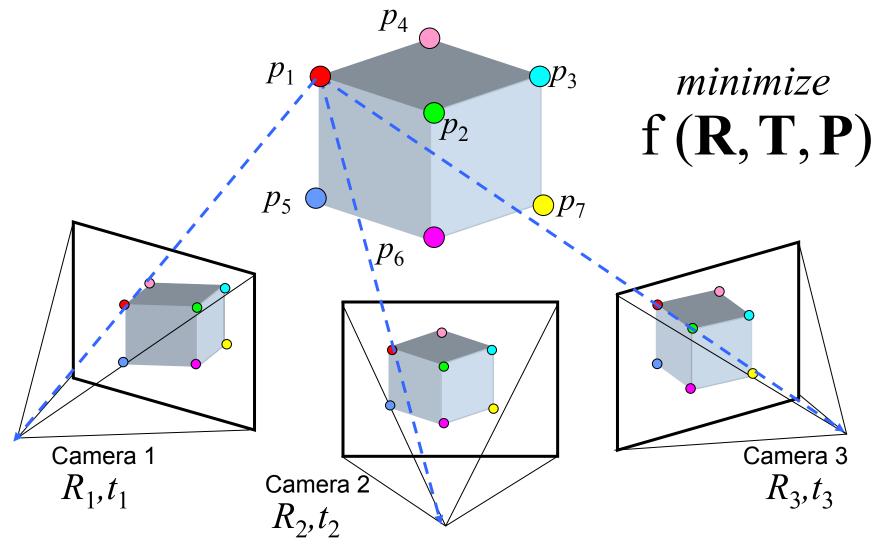
Outliers

Fundamentals and Trends in Image Processing - IMPA cpalomo@inf.puc-rio.br

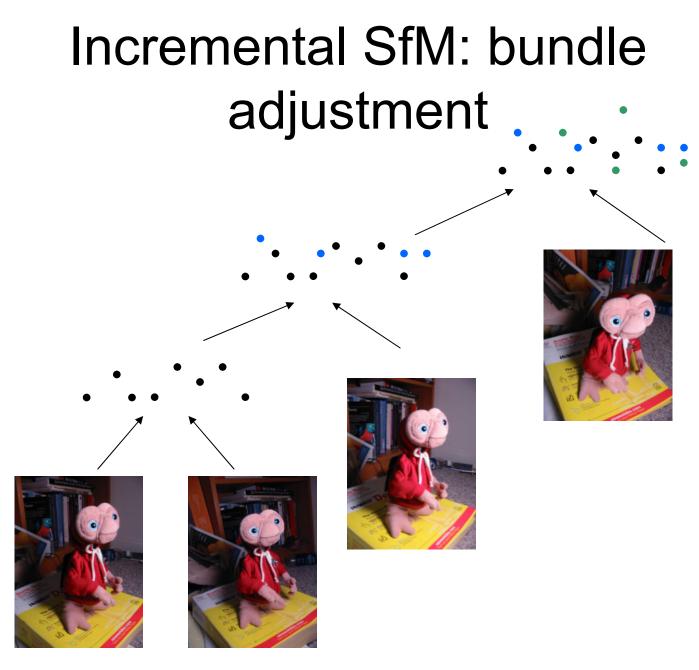
Method – Step 5

- 1. Features/keypoint detection in the input images using SIFT
- 2. Features matching for each pair of images
- 3. Fundamental matrix estimation using the eight-point algorithm, using *RANSAC*
- 4. Removal of matches that are outliers to the estimated fundamental matrix
- 5. Structure from motion step to estimate the parameters of each pair of cameras, in a bundle adjustment process

Structure from motion (SfM)



Fundamentals and Trends in Image Processing – IMPA cpalomo@inf.puc-rio.br

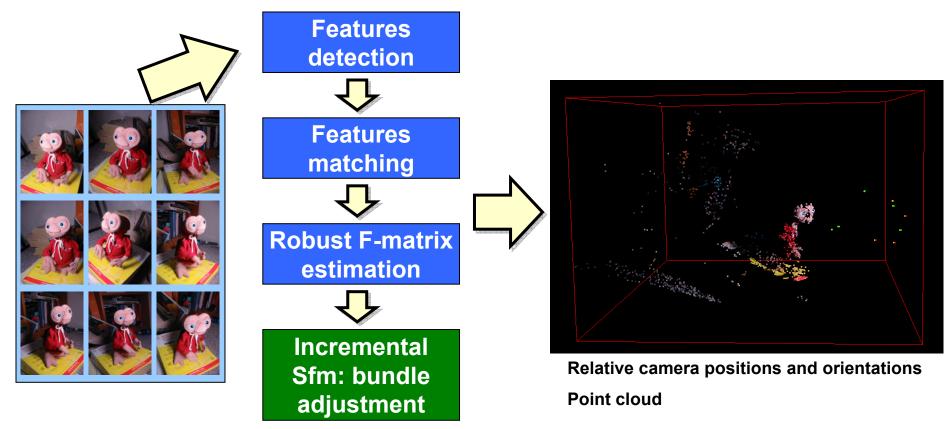


Bundle adjustment code

- Noah Snavely and the University of Washington released their bundle adjustment code for noncommercial use
- Not just the bundle adjustment code, but all the SfM process is made by the released code
- After many (indeed) days sorting out problems with libraries compatibilities, made it work in Visual Studio

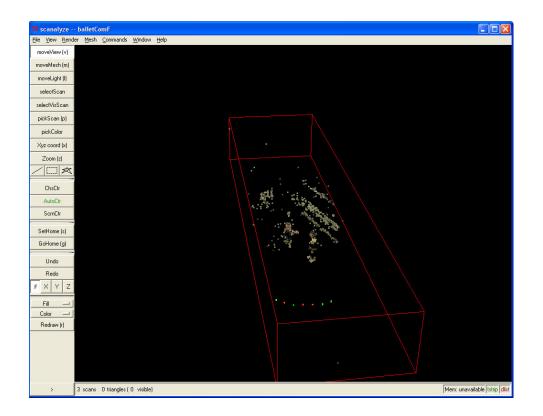
Resulting framework

 Replaced code for features detection, matching and F-matrix estimation with my own, using only the SfM piece



Results

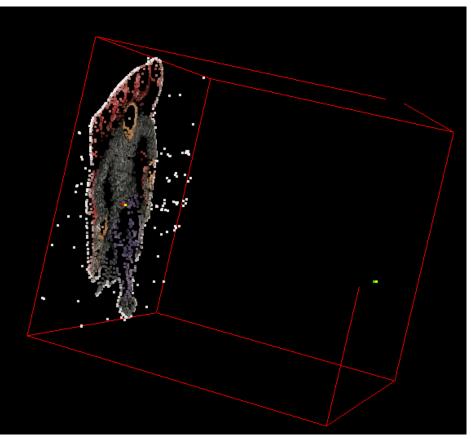
 Point cloud and relative camera positions and orientations can be viewed in Scanalyze (software by Stanford), since they are stored in a **ply** file



Analysis of results

- The SfM results with our F-matrix estimate have been visually plausible, but further analysis must be done
- Since the bundle adjustment consists in a non-linear optimization (by use of Levenberg–Marquardt algorithm), it is prone to local-minima. Therefore, good initialization of parameters is necessary
- Especially the focal length of the camera used for the photos must be informed for the system, otherwise it may converges to a bad result
 - focal length is available through Exif tags for most consumer cameras nowadays

Example of bad convergence to a local minima due to bad initialization of parameters



Future work

- Make experiments with real Community Photo Collections to test the robustness and performance of the method
- Effectively evaluate the bundle adjustment method used, as well as the influence of the initial parameters on the final result
- Finish simple viewer: use IBR, fitting planes as impostors to project photos mixed with the registered points. Smooth transition between photos using blending.
- Experience with multi-view stereo using the output of this framework
- Experience with reconstruction from video
- Work on some contribution regarding the navigation process, as suggested by Luiz Velho: maybe mix IBR with planes as impostor for planar parts of a scene, like walls with paintings in a art gallery, and use full 3D reconstruction for statues

References

- Photo tourism: Exploring photo collections in 3D
 Noah Snavely, Steven M. Seitz, Richard Szeliski.
 ACM Transactions on Graphics (SIGGRAPH Proceedings), 25(3), 2006, 835-846
- Finding Paths through the World's Photos
 Noah Snavely, Rahul Garg, Steven M. Seitz, and Richard Szeliski. ACM Transactions on Graphics (SIGGRAPH Proceedings), 27(3), 2008, 11-21
- Multi-View Stereo for Community Photo Collections
 Michael Goesele, Noah Snavely, Brian Curless, Hugues Hoppe, Steven M. Seitz Proceedings of ICCV 2007, Rio de Janeiro, Brasil, October 14-20, 2007
- <u>http://grail.cs.washington.edu/projects/cpc/</u>
- <u>http://www.cs.unc.edu/~ccwu/siftgpu/</u>
- <u>http://www.cs.umd.edu/~mount/ANN/</u>
- Multiple View Geometry in Computer Vision, second edition Hartley, R.~I. and Zisserman, A.
 Cambridge University Press, ISBN: 0521540518, 2004

Thanks!

Thanks for the listeners of this talk!

Thanks must also be given to the University of Washington and Noah Snavely for making their SfM code available.

> César Morais Palomo cpalomo@inf.puc-rio.br November 2008